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Abstract

A Probabilistically Checkable Proof (PCP) of a mathematical statement
is a proof written in a special manner that allows for efficient probabilistic
verification. The celebrated PCP Theorem states that for every family of
statements in NP, there is a probabilistic verification procedure that checks
the validity of a PCP proof by reading only 3 bits from it. This landmark the-
orem, and the works leading up to it, laid the foundation for many subsequent
works in computational complexity theory, the most prominent among them
being the study of inapproximability of combinatorial optimization problems.

This thesis focuses on a broad class of combinatorial optimization prob-
lems called Constraint Satisfaction Problems (CSPs). In an instance of a
CSP problem of arity 𝑘, we are given a set of variables taking values from
some finite domain, and a set of constraints each involving a subset of at most
𝑘 variables. The goal is to find an assignment that simultaneously satisfies
as many constraints as possible. An alternative formulation of the goal that
is commonly used is Gap-CSP, where the goal is to decide whether a CSP
instance is satisfiable or far from satisfiable, where the exact meaning of being
far from satisfiable varies depending on the problems.

We first study Boolean CSPs, where the domain of the variables is {0, 1}.
The main question we study is the hardness of distinguishing satisfiable
Boolean CSP instances from those for which no assignment satisfies more
than some 𝜀 fraction of the constraints. Intuitively, as the arity increases,
the CSP gets more complex and thus the hardness parameter 𝜀 should de-
crease. We show that for Boolean CSPs of arity 𝑘, it is NP-hard to distinguish
satisfiable instances from those that are at most 2𝑂(𝑘1/3)/2𝑘-satisfiable.

We also study coloring of graphs and hypergraphs. Given a graph or a
hypergraph, a coloring is an assignment of colors to vertices, such that all
edges or hyperedges are non-monochromatic. The gap problem is to distin-
guish instances that are colorable with a small number of colors, from those
that require a large number of colors. For graphs, we prove that there exists
a constant 𝐾0 > 0, such that for any 𝐾 ≥ 𝐾0, it is NP-hard to distinguish
𝐾-colorable graphs from those that require 2Ω(𝐾1/3) colors. For hypergraphs,
we prove that it is quasi-NP-hard to distinguish 2-colorable 8-uniform hyper-
graphs of size 𝑁 from those that require 2(log 𝑁)1/4−𝑜(1) colors.

In terms of techniques, all these results are based on constructions of
PCPs with perfect completeness, that is, PCPs where the probabilistic proof
verification procedure always accepts a correct proof. Not only is this a very
natural property for proofs, but it can also be an essential requirement in
many applications. It has always been particularly challenging to construct
PCPs with perfect completeness for NP statements due to limitations in tech-
niques. Our improved hardness results build on and extend many of the
current approaches. Our Boolean CSP result and GraphColoring result
were proved by adapting the Direct Sum of PCPs idea by Siu On Chan to
the perfect completeness setting. Our proof for hypergraph coloring hardness
improves and simplifies the recent work by Khot and Saket, in which they
proposed the notion of superposition complexity of CSPs.
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Sammanfattning

Ett probabilistiskt verifierbart bevis (eng: Probabilistically Checkable
Proof, PCP) av en matematisk sats är ett bevis skrivet på ett speciellt sätt
vilket möjliggör en effektiv probabilistisk verifiering. Den berömda PCP-
satsen säger att för varje familj av påståenden i NP finns det en probabilistisk
verifierare som kontrollerar om en PCP bevis är giltigt genom att läsa endast 3
bitar från det. Denna banbrytande sats, och arbetena som ledde fram till det,
lade grunden för många senare arbeten inom komplexitetsteorin, framförallt
inom studiet av approximerbarhet av kombinatoriska optimeringsproblem.

I denna avhandling fokuserar vi på en bred klass av optimeringsproblem i
form av villkorsuppfyllningsproblem (engelska “Constraint Satisfaction Prob-
lems” CSPs). En instans av ett CSP av aritet 𝑘 ges av en mängd variabler
som tar värden från någon ändlig domän, och ett antal villkor som vart och ett
beror på en delmängd av högst 𝑘 variabler. Målet är att hitta ett tilldelning
av variablerna som samtidigt uppfyller så många som möjligt av villkoren. En
alternativ formulering av målet som ofta används är Gap-CSP, där målet är
att avgöra om en CSP-instans är satisfierbar eller långt ifrån satisfierbar, där
den exakta innebörden av att vara “långt ifrån satisfierbar” varierar beroende
på problemet.

Först studerar vi booleska CSPer, där domänen är {0, 1}. Den fråga vi
studerar är svårigheten av att särskilja satisfierbara boolesk CSP-instanser
från instanser där den bästa tilldelningen satisfierar högst en andel 𝜀 av
villkoren. Intuitivt, när ariten ökar blir CSP mer komplexa och därmed
bör svårighetsparametern 𝜀 avta med ökande aritet. Detta visar sig vara
sant och ett första resultat är att för booleska CSP av aritet 𝑘 är det NP-
svårt att särskilja satisfierbara instanser från dem som är högst 2𝑂(𝑘1/3)/2𝑘-
satisfierbara.

Vidare studerar vi färgläggning av grafer och hypergrafer. Givet en graf
eller en hypergraf, är en färgläggning en tilldelning av färger till noderna, så
att ingen kant eller hyperkant är monokromatisk. Problemet vi analyserar är
att särskilja instanser som är färgbara med ett litet antal färger från dem som
behöver många färger. För grafer visar vi att det finns en konstant 𝐾0 > 0,
så att för alla 𝐾 ≥ 𝐾0 är det NP-svårt att särskilja grafer som är 𝐾-färgbara
från dem som kräver minst 2Ω(𝐾1/3) färger. För hypergrafer visar vi att det
är kvasi-NP-svårt att särskilja 2-färgbara 8-likformiga hypergrafer som har 𝑁
noder från dem som kräv minst 2(log 𝑁)1/4−𝑜(1) färger.

Samtliga dessa resultat bygger på konstruktioner av PCPer med perfekt
fullständighet. Det vill säga PCPer där verifieraren alltid accepterar ett ko-
rrekt bevis. Inte bara är detta en mycket naturlig egenskap för PCPer, men
det kan också vara ett nödvändigt krav för vissa tillämpningar. Konstruk-
tionen av PCPer med perfekt fullständighet för NP-påståenden ger tekniska
komplikationer och kräver delvis utvecklande av nya metoder. Vårt booleska
CSPer resultat och vårt GraphColoring resultat bevisas genom att anpassa
“Direktsumman-metoden” introducerad av Siu On Chan till fallet med per-
fekt fullständighet. Vårt bevis för hypergraffärgningssvårighet förbättrar och
förenklar ett färskt resultat av Khot och Saket, där de föreslog begreppet
superpositionskomplexitet av CSP.
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Chapter 1

Overview

Let us start by introducing one of the recurring computation problems in this thesis
— GraphColoring: given a natural number 𝑘 ≥ 2, and a graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 is the set of vertices, 𝐸 is the set of edges, and we want to color each node
with a color. Is it possible to color 𝐺 with at most 𝑘 colors such that every edge in
𝐸 has its two endpoints colored with different colors?

When 𝑘 is considered to be a constant rather than part of the input, we usually
denote the decision problem by 𝑘-Coloring.

Problems related to GraphColoring have been studied for centuries. The
Four-Color-Problem, one of the most famous mathematical problems, was
posed in the mid-19th century.1 The original statement of the problem asks that
given a map — which we can think of as a plane separated into regions — whether
it is possible to color the regions with at most 4 colors, such that no two adjacent
regions have the same color, where by “adjacent” we mean that two regions share
a non-trivial segment of border. Stated in modern graph theory terminology, the
Four-Color-Problem asks whether any planar graph is 4-colorable.

There have been numerous attempts at solving the Four-Color-Problem. In
1976, Kenneth Appel and Wolfgang Haken announced that a proof was found with
the help of a computer asserting that the answer to the Four-Color-Problem
is “Yes”, making it the first major theorem proved using a computer. A number
of flaws were subsequently found and fixed. It was highly controversial at the
time especially since the proof was impossible for human to verify, and sparked the
debate around the question of “what is a mathematical proof”. In 1997, Robertson,
Sanders, Seymour and Thomas gave a simpler computer proof [94], and in 2005,
Georges Gonthier managed to prove the theorem with Coq, a general purpose
theorem proving tool.

Despite its origin, the Four-Color-Problem, and GraphColoring in gen-

1Möbius mentioned the problem as early as 1840. The first written record of the problem
seems to be in a letter from de Morgan in 1852, in which he mentioned that one of his students
named Guthrie asked the question.

5
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eral, is probably of little interest to cartographers. Nevertheless, many practical
computational problems can be modeled as GraphColoring, making it a very
interesting problem for many areas of computer science. We give a simple example.

Example. Consider a cellular network in a certain region, with a number of base
stations that are connected to each other. A pair of base stations are interfering if
they are close enough that their signals interfere while using the same frequency.
Therefore when allocating frequencies, we need to make sure that interfering base
stations use disjoint sets of frequencies.

Mobile devices connect to a base station close to them using a certain frequency
channel dynamically assigned by the base station. This enables mobile devices to
communicate with each other through base stations.

Each base station also has a specified traffic demand, which is the minimum
number of simultaneous connections the base station need to be able to handle.
Such requirements may be different for different stations, for instance, it may be
higher in dense urban areas and lower in sparsely populated areas.

Suppose the entire available spectrum is divided into 𝑘 frequency channels, and
our task is to allocate sets of frequencies to the base stations. Each base station
then assigns frequencies to mobile connections from the set of frequencies allocated
to it. Naturally, we would like to know whether there is an allocation that satisfies
the connection requirements without creating interference.

To formulate this as a GraphColoring problem, let us number the base sta-
tions with 1, 2, … , 𝑁 . For station 𝑖, let 𝑑𝑖 be the minimum number of simultaneous
channels required. We construct a graph with ∑𝑁

𝑖=1 𝑑𝑖 vertices. Station 𝑖 corre-
sponds to 𝑑𝑖 vertices that are connected with each other. For 𝑖 ≠ 𝑗, if signals from
station 𝑖 and station 𝑗 interfere, then we add 𝑑𝑖 ⋅𝑑𝑗 edges between all pairs of vertices
corresponding to station 𝑖 and station 𝑗. A 𝑘-coloring of this graph corresponds to
a way to allocate the 𝑘 frequency channels without introducing interference.

1.1 Computational Complexity

A straightforward procedure to solve GraphColoring is simply to try out all
possibilities. This brute force search solution is unfortunately not very practical.
Even in the extremely moderate setting where we have 100 vertices and 3 colors, we
still potentially need to try 3100 ≈ 5 × 1047 possibilities. It was estimated in [56]
that, as of 2011, the total computing power of the whole world is about 6.4 × 1018

instructions per second.2 This means that it will take around 2.5 × 1021 years
to figure out by brute force search whether a single instance of a graph with 100
vertices is 3-colorable.

GraphColoring is only one example of a very broad class of computational
problems called Constraint Satisfaction Problems (CSPs). Roughly speaking, in a

2The authors of [56] arrived at this number by estimating the installation numbers of super-
computers, PCs, mobile devices, and so on. Human brain power or other potential computing
power was not included.
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CSP, we have some variables, such as the colors of the vertices, and some simple
constraints that involve a small number of variables, such as the colors of the two
endpoints of an edge being different. Many problems we encounter are, at their
core, CSPs.

There has been remarkable progress in solving different kinds of CSPs, and
powerful tools such as convex optimization are now available. However, fundamen-
tal problems such as GraphColoring still seems beyond reach. The ultimate goal
of research in computational complexity is to understand the intrinsic hardness3

of computational problems in terms of the amount of resources needed to solve
them. The complexity measures we are interested in include time, storage space,
randomness, query access, and many others, and the goal is to understand how the
resource requirement increases as the size of the instance increases. The focus of
this thesis is time complexity.

1.2 Reduction, Complexity Classes, and NP
Researchers in computational complexity have been quite successful in classifying
computational problems into complexity classes according to their hardness. The
central notion here is reduction.4 An efficient5 reduction from computational prob-
lem 𝐴 to computational problem 𝐵 is an algorithm that solves 𝐴 by calling a small
number of times a subroutine that solves problem 𝐵, and spends a small amount
of time outside those subroutines. Therefore, if there is an efficient algorithm that
solves 𝐵, then we automatically get an efficient algorithm that solves 𝐴.

A problem 𝐴 is complete for a class 𝒞 of problems, or 𝒞-complete, if 𝐴 is in 𝒞,
and all problems in 𝒞 can be reduced to 𝐴.

Among all complexity classes, the most notable ones are undoubtedly P and
NP. The class P contains all computational problems for which there is a polyno-
mial time algorithm that correctly decides the answer. The class NP contains all
computational problems for which there is a polynomial-time verifiable proof. In
other words, a problem 𝐴 is in NP if and only if there exists a polynomial time
algorithm 𝑉 that we refer to as the verifier, such that

• If an instance 𝑥 is a “Yes” instance, then there is a string 𝜋, such that 𝑉
answers “Yes” on input (𝑥, 𝜋). In this case, we say that 𝜋 is a proof 6 of 𝑥
being a “Yes” instance of problem 𝐴.

• If an instance 𝑥 is a “No” instance, then for any 𝜋, 𝑉 always answers “No”
given 𝑥 and 𝜋 as input.

3The word “intrinsic” refers to those measures that are not qualitatively affected by either the
computational model or the way problem instances are represented, so long as they are “reason-
able”. The computational model considered in this thesis are Turing machines.

4Turing reduction, to be precise.
5The exact meaning of “efficient” depends on the settings of the problems, so we do not go

into details here. The same applies to “a small amount of time” later in the text.
6Also commonly known as witness or certificate.
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The verifier 𝑉 that expects 𝜋 to be a 3-coloring of the input graph, and checks
if it is a valid 3-coloring is a verifier that satisfies the above requirement, and thus
3-Coloring is in NP. It is also known that 3-Coloring is NP-complete.

Clearly every problem in P is also in NP. The P vs. NP question asks whether
every problem in NP is in P. If indeed P = NP, then every problem that has
efficiently verifiable proofs also has efficient algorithms. The general consensus
is that P ≠ NP, since it always seems much harder to come up with proofs for
mathematical statements than to verify whether given proofs are correct.

1.3 Probabilistically Checkable Proofs

Observe that in order to verify the certificate 𝜋 for 3-Coloring that we give
above, it is necessary to check the entirety of 𝜋. This is also the case in proofs in
mathematics: to verify whether a proof is correct, we need to go through the proof
line by line, because an erroneous inference in a single step invalidates the whole
proof. Although this can be tedious at times, we do have the strong guarantee that
if a proof is correct, then it will always be accepted, and if a proof is not correct,
then it will never be accepted.

What if we allow the verifier to accept an incorrect proof with some small prob-
ability? This may sound outrageous at first, but in light of the proof of the Four-
Color-Theorem, and other theorems proved with computer assistance such as
the classification of all finite simple groups, it seems that allowing some probability
of error might offer a way out, if in exchange we are able to do proof verification
more efficiently. Goldwasser, Micali and Rackoff [41], and independently Babai
[11], introduced randomness and interaction to the procedure of proof verification
and started the study of interactive proofs.

Again let’s take 3-Coloring as an example. There are two parties in this
interactive setting — the prover and the verifier, and there is some pre-designed
verification protocol. Given any graph 𝐺, the almighty and unscrupulous prover
always attempts to convince the verifier that 𝐺 is 3-colorable. The verifier usually
only has limited computational resources, so the only hope not to get fooled too
often is to design a “robust” protocol.

This turns out to be a very important generalization. Subsequent works in
this area demonstrated the power of interactive proofs, fundamentally changed our
understanding of the notion of a proof, and gave rise to fascinating discoveries
in computational complexity, such as the PCP Theorem, IP = PSpace, and zero-
knowledge proofs.

The idea behind all results in this thesis is to construct Probabilistically Check-
able Proofs, or PCPs. In this setting, the verifier is given a proof of some statement
— say, some graph is 3-colorable — and is only allowed to decide whether to accept
or reject the proof by looking at a very small portion of the proof. The verifier’s
access to the original instance is not limited. The celebrated PCP Theorem says
that for every problem 𝐴 in NP, there is a probabilistic polynomial time verifier 𝑉
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that takes a proof 𝜋 that is a string of 0/1 bits whose length is polynomial in the
size of the instances, reads 3 bits from it, always answers “Yes” if the instance is a
Yes instance, and answers “No” with constant probability if the instance is a No
instance.

Such PCPs can be viewed naturally as an optimization problem: for some prob-
lem 𝐴 in NP and a verifier 𝑉 , given an instance 𝑥, find a proof 𝜋 that maximizes the
probability that 𝑉 accepts (𝑥, 𝜋). Indeed, the notion of Probabilistically Checkable
Proofs as well as the PCP Theorem has become an indispensable tool in the study
of the limit of efficient approximation algorithms for combinatorial optimization
problems.

Below we describe some parameters of PCPs that are important for applications
in hardness of approximation.

Randomness The number of random bits used by 𝑉 . This is also directly related
to the size of the proof that is given to 𝑉 .

Alphabet Size The alphabet the proof 𝜋 is written in. The proof 𝜋 is not always
limited to 0/1 strings. When the alphabet size is larger, each symbol in
the proof potentially gives the verifier more information, therefore a larger
alphabet size could be helpful when the goal is to optimize other parameters.

Completeness The probability that 𝑉 accepts a correct proof. If 𝑉 always accepts
a correct proof, then we say that it has perfect completeness.

Soundness The probability that 𝑉 accepts an incorrect proof.

Query Complexity The number of symbols 𝑉 needs to read from a proof. The
requirement depends on the actual applications, but is typically either a con-
stant or some function that grows slowly as instance size grows.

Amortized Query Complexity Let 𝑐 and 𝑠 be the completeness and the sound-
ness parameters, and let 𝑞 be the query complexity. The amortized query
complexity is 𝑞/ log(𝑐/𝑠). When 𝑐 = 1, this measures how much on average
each additional query decreases the probability that the verifier accepts a
wrong proof.

We refer to the work by Bellare, Goldreich and Sudan [16] for the importance of
these parameters.

1.4 Contribution of This Thesis

In this thesis, we construct PCPs that have perfect completeness. Having perfect
completeness makes it easier to compose a PCP with other reductions, and thus is
a desirable — sometimes even necessary — property in many applications.

This thesis has two main parts. Part II focuses on CSPs on Boolean variables,
and we construct several PCPs with Boolean alphabet. In Chapter 4, we construct
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PCPs for NP, assuming the 𝑑-to-1 Conjectures. For any integer 𝑘 ≥ 4, we give a
PCP that uses Boolean alphabet, has query complexity 𝑘, perfect completeness and
soundness 1

2 + 1
2𝑘 . In Chapter 5, the focus is on the relation between soundness and

query complexity. For a 𝑘-query non-adaptive PCP, the best soundness we could
hope for is 𝑂(𝑘)/2𝑘. We give a construction that achieves 2𝑂(𝑘1/3)/2𝑘, improving
the best previous soundness of 2𝑂(𝑘1/2)/2𝑘 by Håstad and Khot [55].

Part III studies graph and hypergraph coloring. The alphabet size of the PCPs
are exactly the number of colors we can use, the query complexity corresponds
to the size of the edges in the graphs or hypergraphs. Chapter 7 gives improved
hardness for graph coloring, and Chapter 8 shows new hardness results for 2-coloring
8-uniform hypergraphs.

We review some mathematical tools in Chapter 2, and give a more detailed
description of CSP, PCP and hardness of approximation in Chapter 3.

Some of the results in this thesis have appeared previously in different forms.
Chapter 5 is based on the paper “Approximation Resistance on Satisfiable Instances
for Sparse Predicates” [62] in the journal Theory of Computing, and the conference
version of this paper [60] appeared in the 45th ACM Symposium on the Theory
of Computing, in 2013. Chapter 7 is based on the paper “Improved Hardness of
Approximating Chromatic Number” [61], which appeared in APPROX 2013.

Chapter 4 is based on a technical report on ECCC [59], and Chapter 8 is more
recent and has not yet been published else-where.



Chapter 2

Mathematical Background

We introduce some notations, and review the mathematical tools that are useful
for the rest of the thesis. We recall some standard notations and conventions in
Section 2.1. This is followed by a review of basic probability theory in Section
2.2, some algebra in Section 2.3, and an introduction to discrete Fourier analysis
in Section 2.4. We conclude this chapter with a quick overview of Long-Code,
Low-Degree-Long-Code and Hadamard-Code in Section 2.5.

2.1 Basic Notations

We use the following notations for sets that are frequently used.

ℤ The integers
ℕ The natural numbers {𝑛 ∈ ℤ ∣ 𝑛 ≥ 0}
ℕ+ The natural numbers {𝑛 ∈ ℤ ∣ 𝑛 ≥ 1}
[𝑛] The set of integers from 1 to 𝑛 {1, 2, … , 𝑛}
ℝ The real numbers
ℂ The complex numbers
𝔽𝑞 The finite field with 𝑞 elements, for some prime power 𝑞

For two sets 𝑋 and 𝑌 , we use 𝑋𝑌 to denote the set of all vectors with elements
from 𝑋 indexed by 𝑌 . There is a bijection between vectors in 𝑋𝑌 and functions
𝑓 ∶ 𝑌 → 𝑋, and we make no distinction between these two notation. When 𝑋 = [2],
the set 𝑋𝑌 can also be viewed as the family of all subsets of 𝑌 , also known as the
power set of 𝑌 , denoted as 𝒫(𝑌 ). When 𝑌 = [𝑛], we write 𝑋𝑛 instead of 𝑋[𝑛].

For a vector 𝑣 ∈ 𝑋𝑌 and a set 𝑆 ⊆ 𝑌 , we use 𝑣|𝑆 ∈ 𝑋𝑆 to denote the restriction
of 𝑣 on 𝑆.

For a statement 𝑃 , the Iverson bracket notation is defined as

[𝑃 ] = { 1 if 𝑃 is true;
0 otherwise.

11
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Let 𝔽 be a field, 𝑋 an index set, and 𝑢, 𝑣 ∈ 𝔽𝑋 be two vectors. The dot product
⟨𝑢, 𝑣⟩ defined as

⟨𝑢, 𝑣⟩ = ∑
𝑥∈𝑋

𝑢𝑥 × 𝑣𝑥 .

If the vectors are over a Euclidean space, the dot product is also called inner product.

2.2 Probability Theory

In this thesis, we work exclusively with probability spaces with finite sample spaces.
Let (Ω, 𝜇) be a probability space. The support of the space supp(Ω, 𝜇) =

{𝑥 ∈ Ω ∣ 𝜇(𝑥) > 0} contains all samples from Ω with non-zero probability under
𝜇.

A random variable over (Ω, 𝜇) is a function 𝑓 ∶ Ω → ℝ. We define the expectation
of function 𝑓 over (Ω, 𝜇) as

𝐄[𝑓] = ∑
𝑥∈Ω

𝑓(𝑥)𝜇(𝑥) ,

and the variance of 𝑓 as
𝐕𝐚𝐫[𝑓] = 𝐄[𝑓2] − 𝐄[𝑓]2 .

For 1 ≤ 𝑝 < ∞, the 𝑙𝑝 norm of 𝑓 is defined as

‖𝑓‖𝑝 = (𝐄[|𝑓|𝑝])1/𝑝 .

We define the infinity norm 𝑙∞ as

‖𝑓‖∞ = max
𝑥∶𝜇(𝑥)>0

|𝑓(𝑥)| .

Example 2.1. Let (Ω, 𝜇) be the probability space where Ω = [𝑁] for some integer
𝑁 , and 𝜇 is the uniform distribution over Ω.

Let 𝑓 ∶ Ω → ℝ be the function that evaluates to 1 everywhere on Ω. Then

‖𝑓‖1 = 1, ‖𝑓‖2 = 1, ‖𝑓‖4 = 1, …

Define 𝑔 ∶ Ω → ℝ as follows

𝑔(𝑥) = { 𝑁 if 𝑥 = 1;
0 otherwise.

Then 𝑔 has norms

‖𝑔‖1 = 1, ‖𝑔‖2 =
√

𝑁, ‖𝑔‖4 = 𝑁3/4, …

We can see that although 𝑓 and 𝑔 has the same 𝑙1 norm, their 𝑙2, 𝑙4 and all
other norms behave very differently.
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We use 𝐿2(Ω, 𝜇) to denote the set of all functions 𝑓 ∶ Ω → ℝ such that ‖𝑓‖2 < ∞.
Since in our setting Ω is finite, 𝐿2(Ω, 𝜇) is simply the set of all functions 𝑓 ∶ Ω → ℝ.
The inner-product on 𝐿2(Ω, 𝜇) is defined as

⟨𝑓, 𝑔⟩𝜇 = 𝐄
𝑥∈(Ω,𝜇)

[𝑓(𝑥) ⋅ 𝑔(𝑥)] .

Theorem 2.2 (Hölder’s Inequality). Let 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞ be such that 1/𝑝+1/𝑞 = 1
(we adopt the convention that when 𝑞 = ∞, 1/𝑞 = 0). Then for every 𝑓, 𝑔 ∈
𝐿2(Ω, 𝜇)

⟨𝑓, 𝑔⟩ ≤ ‖𝑓‖𝑝 ⋅ ‖𝑔‖𝑞 .
Taking 𝑝 = 𝑞 = 2, we have the following Cauchy-Schwarz Inequality.

Theorem 2.3 (Cauchy-Schwarz’ Inequality). For every 𝑓, 𝑔 ∈ 𝐿2(Ω, 𝜇), we have

⟨𝑓, 𝑔⟩ ≤ ‖𝑓‖2 ⋅ ‖𝑔‖2 .

The following generalization of Hölder’s Inequality is also useful in some cases,
and can be proved using mathematical induction and Hölder’s Inequaltiy.

Theorem 2.4 (Generalized Hölder’s Inequality). Assume that 1 ≤ 𝑝1, … , 𝑝𝑡 ≤ ∞,
such that

𝑡
∑
𝑖=1

1
𝑝𝑖

= 1 .

Then for all 𝑓1, … , 𝑓𝑡 ∈ 𝐿2(Ω, 𝜇)

∥
𝑡

∏
𝑖=1

𝑓𝑖∥
1

≤
𝑡

∏
𝑖=1

‖𝑓𝑖‖𝑝𝑖
.

In many parts of this thesis, we deal with the sample spaces that have the form
Ω𝑛, and the distribution is a product distribution 𝜇 = ⨂𝑛

𝑖=1 𝜇𝑖, where for each 𝑖,
𝜇𝑖 is a distribution over Ω𝑖. We call these product spaces.

We also study correlated probability spaces. Let (Ω × Ψ, 𝜇) be a probability
space. We say that Ω and Ψ are correlated spaces. The notion of correlation for
correlated probability spaces was introduced by Mossel [86].

Definition 2.5 ([86]). Let (Ω × Ψ, 𝜇) be a correlated probability space, 𝜇 is a
distribution on the finite product set Ω × Ψ and that the marginals of 𝜇 on Ω and
Ψ have full support. Define the correlation between Ω and Ψ to be

𝜌(Ω, Ψ; 𝜇) = max
𝑓∶Ω→ℝ
𝑔∶Ψ→ℝ

{| 𝐄[𝑓𝑔]| ∣ 𝐄[𝑓] = 0, 𝐄[𝑓2] ≤ 1, 𝐄[𝑔] = 0, 𝐄[𝑔2] ≤ 1},

where the expectation 𝐄[𝑓𝑔] is under 𝜇, and 𝐄[𝑓], 𝐄[𝑓2], 𝐄[𝑔] and 𝐄[𝑔2] are under
marginals of 𝜇 on corresponding spaces.
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A useful fact for bounding correlation of probability spaces from [86] is that the
correlation of a product of correlated probability space is equal to the maximum
correlation among the individual correlated spaces (excluding empty components).

Lemma 2.6 ([86]). Let {(Ω𝑖 ×Ψ, 𝜇𝑖)} be a set of correlated probability spaces, then

𝜌 (∏
𝑖

Ω𝑖, ∏
𝑖

Ψ𝑖; ∏
𝑖

𝜇𝑖) ≤ max
𝑖

𝜌(Ω𝑖, Ψ𝑖; 𝜇𝑖) .

The following is a useful condition for the correlation being strictly smaller than
1 and is from [86].

Lemma 2.7 ([86]). Let {Ω × Ψ, 𝜇} be two correlated spaces such that the smallest
probability in supp(𝜇) is at least 𝛼 > 0. Define a bipartite graph 𝐺 = (Ω, Ψ, 𝐸)
where (𝑎, 𝑏) ∈ Ω × Ψ satisfies (𝑎, 𝑏) ∈ 𝐸 if 𝜇(𝑎, 𝑏) > 0. If 𝐺 is connected, then

𝜌(Ω, Ψ; 𝜇) ≤ 1 − 𝛼2/2.

We also need the following lemma when analyzing correlations. Intuitively, if we
can decompose 𝜇 into a convex combination of two distributions and we can bound
the correlation between Ω and Ψ in both sub-distributions by some constant 𝑐, then
barring special cases it seems reasonable that the correlation 𝜌(Ω, Ψ; 𝜇) should also
be bounded by some function of 𝑐. More formally, we have the following lemma.

Lemma 2.8 ([104]). Let (Ω × Ψ, 𝛿𝜈 + (1 − 𝛿)𝜈′) be a correlated space such that the
marginal distribution of at least one of Ω and Ψ is identical on both 𝜈 and 𝜈′. Then

𝜌(Ω, Ψ; 𝛿𝜈 + (1 − 𝛿)𝜈′) ≤ √𝛿𝜌(Ω, Ψ; 𝜈)2 + (1 − 𝛿)𝜌(Ω, Ψ; 𝜈′)2 .

Finally, we recall the notion of 𝑘-wise independence.

Definition 2.9. Let 𝜂 be some probability distribution over Ω. A product space
(Ω𝑛, 𝜇) is 𝑘-wise independent with marginals 𝜂, if for every subset 𝑆 ⊆ [𝑛], where
|𝑆| ≤ 𝑘, we have that 𝜇|𝑆 = 𝜂⊗𝑆.

If 𝜂 is the uniform distribution over Ω, we say that (Ω𝑛, 𝜇) is balanced 𝑘-wise
independent.

We say that a set 𝑃 ⊆ Ω𝑛 supports a balanced 𝑘-wise independent distribution if
there exists some 𝑘-wise independent distribution 𝜈 on Ω𝑛, such that supp(𝜈) ⊆ 𝑃 .

2.3 Algebra

In this section, we review some algebraic tools that are useful. We assume some
familiarity with elementary linear algebra.

Denote by 𝐼𝑚 the identity matrix of order 𝑚. When the size is clear from
context, we drop the subscript and simply write 𝐼 .
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A real matrix 𝑄 is orthogonal if 𝑄𝑇 𝑄 = 𝑄𝑄𝑇 = 𝐼 . A set of vectors {𝑣1, … , 𝑣𝑛}
is orthonormal if for all 𝑖, 𝑗 ∈ [𝑛], ⟨𝑣𝑖, 𝑣𝑗⟩ = [𝑖 = 𝑗].

Let 𝐴 ∈ ℝ𝑚×𝑚 be a matrix. We say that vector 𝑣 ∈ ℝ𝑚, 𝑣 ≠ 0 is an eigenvector
of 𝐴 if there exists 𝜆 ∈ ℝ, such that 𝐴𝑣 = 𝜆𝑣. In this case, we say that 𝜆 is an
eigenvalue of 𝐴. The multiset of the eigenvalues of 𝐴 is called its spectrum.

Most matrices we work with in this thesis are symmetric. We have the following
theorem regarding the spectrum of symmetric matrices.

Theorem 2.10. Let 𝐴 ∈ ℝ𝑚×𝑚 be a real symmetric matrix, and let 𝜆1, … , 𝜆𝑚 be
its eigenvalues. Then there exists an orthonormal set of vectors 𝑣1, … , 𝑣𝑚 ∈ ℝ𝑚,
such that for all 𝑖 ∈ [𝑚], 𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖.

Fact 2.11. If 𝐴𝑇 ⋅ 𝐴 = 𝑐𝐼 for some 𝑐 ≥ 0, then all eigenvalues of 𝐴 have absolute
value

√𝑐.

The following is a standard fact about quadratic forms.

Claim 2.12. Let 𝐴 ∈ ℝ𝑚×𝑚 be a symmetric real matrix with eigenvalues 𝜆1, … , 𝜆𝑚.
Let 𝜆𝑚𝑎𝑥 = max𝑖 |𝜆𝑖|. Note that by definition 𝜆𝑚𝑎𝑥 ≥ 0. Then for any 𝑢 ∈ ℝ𝑚

∣𝑢𝑇 𝐴𝑢∣ ≤ 𝜆𝑚𝑎𝑥‖𝑢‖2
2 .

Proof. Let 𝑣1, … , 𝑣𝑚 be a set of orthonormal eigenvectors of 𝐴, with corresponding
eigenvalues 𝜆1, … , 𝜆𝑚. Express 𝑢 under this basis as 𝑣 = ∑𝑖∈[𝑚] 𝑐𝑖𝑣𝑖. Then using
the orthonormality of 𝑣1, … , 𝑣𝑚, we have

𝑢𝑇 𝐴𝑢 = ⎛⎜
⎝

∑
𝑖∈[𝑚]

𝑐𝑖𝑣𝑇
𝑖 ⎞⎟

⎠
𝐴 ⎛⎜

⎝
∑

𝑖∈[𝑚]
𝑐𝑖𝑣𝑖⎞⎟

⎠

= ⎛⎜
⎝

∑
𝑖∈[𝑚]

𝑐𝑖𝑣𝑇
𝑖 ⎞⎟

⎠
⎛⎜
⎝

∑
𝑖∈[𝑚]

𝑐𝑖𝜆𝑖𝑣𝑖⎞⎟
⎠

= ∑
𝑖,𝑗∈[𝑚]

𝜆𝑗𝑐𝑖𝑐𝑗𝑣𝑇
𝑖 𝑣𝑗

= ∑
𝑗∈[𝑚]

𝜆𝑗𝑐2
𝑗

≤ 𝜆𝑚𝑎𝑥 ∑
𝑗∈[𝑚]

𝑐2
𝑗 = 𝜆𝑚𝑎𝑥‖𝑢‖2

2 .

We now turn to polynomials over 𝔽2. For a positive integer 𝑚, denote by P𝑚
the vector space of 𝑚-variable functions 𝔽𝑚

2 → 𝔽2. For 𝑓, 𝑔 ∈ P𝑚, let Δ(𝑓, 𝑔) be
the Hamming distance between 𝑓 and 𝑔. For a subset of functions ℱ ⊆ P𝑚, the
distance between 𝑔 and ℱ is defined as Δ(𝑔, ℱ) = min𝑓∈ℱ Δ(𝑓, 𝑔).
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Definition 2.13. For 𝑓, 𝑔 ∈ P𝑚, their dot product on P𝑚 is defined as ⟨𝑓, 𝑔⟩ =
∑𝑥∈𝔽𝑚

2
𝑓(𝑥)𝑔(𝑥).

Let 𝒜 be a subspace of P𝑚. The dual space is defined as 𝒜⊥ ∶= {𝑓 ∈ P𝑚 ∣ ∀𝑔 ∈
𝒜, ⟨𝑓, 𝑔⟩ = 0}.

Denote by P𝑚,𝑑 the space of functions with degree at most 𝑑. The following is
a well known fact about the dual of P𝑚,𝑑.

Fact 2.14. P⊥
𝑚,𝑑 = P𝑚,𝑚−𝑑−1.

For 𝛽 ∈ P𝑚, denote by supp(𝛽) the support of 𝛽, that is supp(𝛽) = {𝑥 ∣ 𝛽(𝑥) =
1}. Define wt(𝛽) = |supp(𝛽)|. Define the character function 𝜒𝛽 ∶ P𝑚,𝑑 → ℝ as
𝜒𝛽(𝑓) = (−1)⟨𝛽,𝑓⟩.

Fact 2.14 gives a method of testing whether 𝛽 ∈ P⊥
𝑚,𝑑 for any degree 𝑑: pick a

random 𝑔 ∼ P𝑚,𝑑 and evaluate 𝜒𝛽(𝑔). If 𝛽 ∈ P⊥
𝑚,𝑑, then the result is always 1,

otherwise, the result is 1 half of the time, and −1 the other half of the time.
In [29], Dinur and Guruswami proved that if 𝛽 is far from P⊥

𝑚,𝑑, then it suffices
to pick 𝑔 in a pseudo-random way.

Theorem 2.15 ([29]). Let 𝑑 be a multiple of 4. If 𝛽 ∈ P𝑚 is such that Δ(𝛽, P𝑚,𝑑) ≥
2𝑑/2, then

𝐄
𝑔∼P𝑚,𝑑/4

[∣ 𝐄
ℎ∼P𝑚,3𝑑/4

[𝜒𝛽(𝑔ℎ)]∣] ≤ 2−4⋅2𝑑/4 .

Note that 𝜒𝛽(𝑔ℎ) = (−1)⟨𝛽𝑔,𝛽ℎ⟩. We now prove a generalization of the above
theorem that is useful for later applications in this thesis.

The setting is that we have an additional 𝑡 functions 𝐴1, … , 𝐴𝑡 ∶ P𝑚,𝑑 → 𝔽2.
We show that as long as 𝑡 is small compared to 2𝑑/2, the expectation

𝐄
𝑔,ℎ

[(−1)⟨𝛽𝑔,𝛽ℎ⟩+∑𝑡
𝑖=1 𝐴𝑖(𝑔)𝐴𝑖(ℎ)]

is still close to 0 for arbitrary 𝐴1, … , 𝐴𝑡.
We use some of the notions and results from [29].

Definition 2.16. For 𝛽 and 𝑘 ≤ 𝑑, define

𝐵(𝑚)
𝑑,𝑘(𝛽) ∶= {𝑔 ∈ P𝑚,𝑘 ∣ 𝛽𝑔 ∈ P𝑚,𝑚−𝑑−1+𝑘} .

Note that 𝐵(𝑚)
𝑑,𝑘(𝛽) is a subspace of P𝑚,𝑘.

For positive integers 𝑑, 𝑘, define Φ𝑑,𝑘 ∶ ℕ+ → ℕ as follows: if 𝑑 < 𝑘, then Φ𝑑,𝑘
is identically 0, otherwise

Φ𝑑,𝑘(𝐷) = min
𝑚>𝑑

𝛽∈P𝑚∶∆(𝛽,𝑃(𝑚,𝑚−𝑑−1))≥𝐷
{dim(𝑃(𝑚, 𝑘)) − dim(𝐵(𝑚)

𝑑,𝑘(𝛽))} .
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The following two claims are from [29], which serve as the basis step and induc-
tion step for their lower-bound for Φ𝑑,𝑘(𝐷).
Claim 2.17. For 𝑑 ≥ 𝑘 and 𝐷 ≥ 1, Φ𝑑,𝑘(𝐷) ≥ 1.

Claim 2.18. For all 𝑑 ≥ 𝑘 and 40 < 𝐷 < 2𝑑, Φ𝑑,𝑘(𝐷) ≥ Φ𝑑−1,𝑘(𝐷/4) +
𝜙𝑑−1,𝑘−1(𝐷/4).

For 𝐷 = 2𝑑−4 = 4𝑑/2−2 and 𝑘 = 𝑑/2, applying the above for a depth of 𝑑/2−4,
reducing 𝐷 from 4𝑑/2−2 to 16, we have Φ𝑑,𝑑/2(2𝑑−4) ≥ 2𝑑/2−4. This gives the
following theorem.

Theorem 2.19. For all integers 𝑚, 𝑑 such that 𝑚 > 𝑑 > 0 and 4|𝑑, if 𝛽 ∶ 𝔽𝑚
2 → 𝔽2

has distance more than 2𝑑−4 from P𝑚,𝑚−𝑑−1, then the subspace 𝐵(𝑚)
𝑑,𝑑/2(𝛽) (as a

subspace of P𝑚,𝑑/2) has codimension at least 2𝑑/2−4.

We remark that Dinur and Guruswami used different degree parameters in [29]
for their application. Otherwise, the above theorem is the same as in [29].

Theorem 2.20. Let 𝛽 ∶ 𝔽𝑚
2 → 𝔽2 be a polynomial with distance more than 2𝑑−4

from P𝑚,𝑚−𝑑−1. Let 𝑡 ∈ ℕ+ and 𝐴1, … , 𝐴𝑡 ∶ P𝑚,𝑑/2 → 𝔽2 be some arbitrary 𝑡
functions. Let 𝜇 be the uniform distribution on P𝑚,𝑑/2. Then

𝐄
𝑔,ℎ∼𝜇

[𝜒𝛽(𝑔ℎ) ⋅ (−1)∑𝑡
𝑖=1 𝐴𝑖(𝑔)𝐴𝑖(ℎ)]

= 𝐄
𝑔,ℎ∼𝜇

[(−1)⟨𝛽𝑔,𝛽ℎ⟩+∑𝑡
𝑖=1 𝐴𝑖(𝑔)𝐴𝑖(ℎ)] ≤ 2−(2𝑑/2−4−𝑡)/2 .

Proof. Denote by 𝒲 the quotient space P𝑚,𝑑/2/𝐵(𝑚)
𝑑,𝑑/2(𝛽). By Theorem 2.19, we

have 𝑤 ∶= dim(𝒲) = codim(𝐵(𝑚)
𝑑,𝑑/2(𝛽)) ≥ 2𝑑/2−4.

The expectation we are considering can be written as

𝐄
𝑔0,ℎ0∼𝒲

𝐄
𝑔∶𝑔−𝑔0∈𝐵(𝑚)

𝑑,𝑑/2(𝛽)
ℎ∶ℎ−ℎ0∈𝐵(𝑚)

𝑑,𝑑/2(𝛽)

[(−1)⟨𝛽𝑔,𝛽ℎ⟩+∑𝑡
𝑖=1 𝐴𝑖(𝑔)𝐴𝑖(ℎ)] . (2.1)

Consider 𝑓 ∈ P𝑚,𝑑/2 and 𝑔 ∈ 𝐵(𝑚)
𝑑,𝑑/2(𝛽). We have ⟨𝛽𝑓, 𝛽𝑔⟩ = ⟨𝛽𝑔, 𝑓⟩ = 0,

because 𝑓 ∈ P𝑚,𝑑/2 and 𝛽𝑔 ∈ P𝑚,𝑚−𝑑/2−1 = P⊥
𝑚,𝑑/2. This allows us to define

“dot product” between elements in 𝒲. In particular, for any 𝑓, 𝑓′, 𝑔, 𝑔′ ∈ P𝑚,𝑑/2
such that 𝑓 − 𝑓′, 𝑔 − 𝑔′ ∈ 𝐵(𝑚)

𝑑,𝑑/2(𝛽), we have

⟨𝛽𝑓′, 𝛽𝑔′⟩
= ⟨𝛽𝑓′, 𝛽𝑔′⟩ + ⟨𝛽(𝑓 − 𝑓′), 𝛽𝑔′⟩ + ⟨𝛽𝑓′, 𝛽(𝑔 − 𝑔′)⟩ + ⟨𝛽(𝑓 − 𝑓′), 𝛽(𝑔 − 𝑔′)⟩
= ⟨𝛽𝑓, 𝛽𝑔⟩ .
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This means that taking any representative from 𝒲 will give the same result for this
“dot product”.

We can thus further rewrite the expectation as

(2.1) = 𝐄
𝑔0,ℎ0∼𝒲

⎡
⎢⎢⎢
⎣

(−1)⟨𝛽𝑔0,𝛽ℎ0⟩ 𝐄
𝑔∶𝑔−𝑔0∈𝐵(𝑚)

𝑑,𝑑/2(𝛽)
ℎ∶ℎ−ℎ0∈𝐵(𝑚)

𝑑,𝑑/2(𝛽)

[(−1)∑𝑡
𝑖=1 𝐴𝑖(𝑔)𝐴𝑖(ℎ)]

⎤
⎥⎥⎥
⎦

. (2.2)

Consider the matrix 𝑀 ∈ ℝ2𝑤+𝑡×2𝑤+𝑡 , where the rows and columns are indexed
by a pair (𝑓0, 𝑎) where 𝑓0 ∈ 𝒲 and 𝑎 ∈ 𝔽𝑡

2, and the entries are

𝑀(𝑓0,𝑎),(𝑔0,𝑏) = (−1)⟨𝛽𝑓0,𝛽𝑔0⟩+∑𝑡
𝑖=1 𝑎𝑖𝑏𝑖 .

Define vector 𝑢 ∈ ℝ2𝑤+𝑡 as

𝑢𝑓0,𝑎 = Pr
𝑔∼P𝑚,𝑑/2

[𝑔 − 𝑓0 ∈ 𝐵(𝑚)
𝑑,𝑑/2(𝛽) ∧ ∀𝑖 ∈ [𝑡], 𝐴𝑖((𝑔)) = 𝑎𝑖] .

Since in (2.2), 𝑔 and ℎ are sampled independently, we can verify that the expectation
in (2.2) is exactly 𝑢𝑇 𝑀𝑢. Moreover, since 𝑔 is chosen uniformly random from
P𝑚,𝑑/2, the probability that 𝑔 − 𝑓0 ∈ 𝐵(𝑚)

𝑑,𝑑/2(𝛽) is exactly 2−𝑤, thus all entries in
𝑢 has absolute value at most 2−𝑤, and therefore ‖𝑢‖2 ≤ 2−𝑤/2.

We finish the proof by studying the spectrum of 𝑀 . Observe that 𝑀 can be
written as the tensor product of a 2𝑤 × 2𝑤 matrix and a 2𝑡 × 2𝑡 matrix as follows.
Define 𝑊 ∈ ℝ2𝑤×2𝑤 as

𝑊𝑓0,𝑔0
= (−1)⟨𝛽𝑓0,𝛽𝑔0⟩ ,

for 𝑓0, 𝑔0 ∈ 𝒲. Define 𝐻 ∈ ℝ2𝑡×2𝑡 as

𝐻𝑎,𝑏 = (−1)∑𝑡
𝑖=1 𝑎𝑖𝑏𝑖 .

We can easily verify that 𝑀 = 𝑊 ⊗ 𝐻.
The matrix 𝐻 satisfies 𝐻𝐻𝑇 = 2𝑡 ⋅ 𝐼 , where 𝐼 is the identity matrix, therefore

we have that the eigenvalues of 𝐻 all have absolute value exactly 2𝑡/2. For the
spectrum of 𝑊 , let 𝑓0, 𝑔0 ∈ 𝒲 be two rows of 𝑊 . Consider the dot product of row
𝑓0 and 𝑔0 of matrix 𝑊

𝑊 𝑇
𝑓0

𝑊𝑔0
= ∑

ℎ0∈𝒲
(−1)⟨𝛽(𝑓0+𝑔0),𝛽ℎ0⟩ = ∑

ℎ0∈𝒲
(−1)⟨𝛽(𝑓0+𝑔0),ℎ0⟩ .

The above sum is 2𝑤 if 𝛽(𝑓0 + 𝑔0) ∈ P𝑚,𝑚−𝑑/2−1, or in other words 𝑓0 and
𝑔0 belong to the same coset in 𝒲, and otherwise the sum is 0. Hence we have
𝑊𝑊 𝑇 = 2𝑤 ⋅ 𝐼 , and thus the eigenvalues of 𝑊 all have absolute value 2𝑤/2. We
conclude that the tensor product matrix 𝑀 = 𝑊 ⊗𝐻 has eigenvalues with absolute
value 2(𝑤+𝑡)/2.

Using Claim 2.12, we can now upper-bound the absolute value of the expectation
by |𝑢𝑇 𝑀𝑢| ≤ 2(𝑤+𝑡)/2 ⋅ ‖𝑢‖2

2 = 2−(𝑤−𝑡)/2.
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2.4 Fourier Analysis

Let (Ω, 𝜇) be a finite probability space with |Ω| = 𝑞, and we assume that for every
𝑥 ∈ Ω, 𝜇(𝑥) > 0. Let (Ω𝑛, 𝜇⊗𝑛) be a product space. In this thesis, we will study
functions over (Ω𝑛, 𝜇⊗𝑛), and in most cases we have Ω = 𝔽2. We now introduce
some analytical tools that help us understand the structures of these functions. An
excellent resource for more details of many of the results presented here can be
found in the book by Ryan O’Donnell [88].

2.4.1 Fourier Decomposition
Let 𝜒0, … , 𝜒𝑞−1 ∶ Ω → ℝ be an orthonormal basis for the space 𝐿2(Ω, 𝜇) with
respect to the inner-product ⟨⋅, ⋅⟩𝜇. Let this basis be such that 𝜒0 = 𝟏, where 𝟏 is
the identically one function.

When Ω = 𝔽2 and 𝜇 is the uniform distribution on 𝔽2, we use the following as
the basis:

𝜒𝑟(𝑥) = (−1)𝑟𝑥, 𝑟 = 0, 1 .
For 𝜎 ∈ Ω𝑛, define

𝜒𝜎(𝑥1, … , 𝑥𝑛) =
𝑛

∏
𝑖=1

𝜒𝜎𝑖
(𝑥𝑖) .

Then {𝜒𝜎}𝜎∈Ω𝑛 forms an orthonormal basis for 𝐿2(Ω𝑛, 𝜇⊗𝑛), and every function
𝑓 ∈ 𝐿2(Ω𝑛, 𝜇⊗𝑛) can be written as

𝑓(𝑥) = ∑
𝜎∈Ω𝑛

̂𝑓𝜎𝜒𝜎(𝑥) ,

where the Fourier coefficients { ̂𝑓𝜎 ∶ Ω𝑛 → ℝ}
𝜎∈Ω𝑛

are defined by ̂𝑓𝜎 = ⟨𝑓, 𝜒𝜎⟩𝜇⊗𝑛 .

We summarize the basic facts about ̂𝑓 below.

Fact 2.21. Let 𝟎 be the all-0 vector. Let 𝑓 ∈ 𝐿2(Ω𝑛, 𝜇⊗𝑛). Then

𝐄[𝑓] = ̂𝑓𝟎, 𝐕𝐚𝐫[𝑓] = ∑
𝜎≠𝟎

̂𝑓2
𝜎 .

The following is known as Parseval’s identity.

Fact 2.22. Let 𝑓 ∈ 𝐿2(Ω𝑛, 𝜇⊗𝑛). Then

‖𝑓‖2
2 = 𝐄

𝑥
[𝑓(𝑥)2] = ∑

𝜎∈Ω𝑛

̂𝑓2
𝜎 .

We also make extensive use of the following Efron-Stein decomposition.
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Theorem 2.23 ([35, 86]). Any function 𝑓 ∈ 𝐿2(Ω𝑛, 𝜇⊗𝑛) can be uniquely decom-
posed as

𝑓(𝑥) = ∑
𝑆⊆[𝑛]

𝑓𝑆(𝑥) ,

where

• the function 𝑓𝑆(𝑥) depends only on 𝑥𝑆 = {𝑥𝑖 ∣ 𝑖 ∈ 𝑆};

• for every 𝑆, 𝑇 ⊆ [𝑛], 𝑆 − 𝑇 ≠ ∅, 𝑥′ ∈ Ω𝑛, it holds that

𝐄[𝑓𝑆(𝑥) ∣ 𝑥𝑇 = 𝑥′
𝑇 ] = 0.

For 𝜎 ∈ Ω𝑛, let Set(𝜎) = {𝑖 ∣ 𝜎𝑖 ≠ 0}, and let |𝜎| = | Set(𝜎)|. It is easily
verified that the Efron-Stein decomposition is related to the Fourier decomposition
as follows

𝑓𝑆(𝑥) = ∑
𝜎∈Ω𝑛

Set(𝜎)=𝑆

̂𝑓𝜎𝜒𝜎(𝑥) .

2.4.2 Influences and Noise
The notion of influence of a coordinate on a function has proved to be influential
in combinatorics and theoretical computer science.

Definition 2.24. For 𝑓 ∈ 𝐿2(Ω𝑛, 𝜇⊗𝑛), 𝑖 ∈ [𝑛], the influence of 𝑖 on 𝑓 is defined
as

Inf𝑖(𝑓) = 𝐄
𝑥[𝑛]−{𝑖}

[𝐕𝐚𝐫
𝑥𝑖

[𝑓(𝑥)]] .

Note that when we refer to influence, it is always with respect to the underlying
probability space (Ω𝑛, 𝜇⊗𝑛). We have the following characterization of influence in
terms of Fourier decomposition and Efron-Stein decomposition.

Proposition 2.25. For 𝑓 ∈ 𝐿2(Ω𝑛, 𝜇⊗𝑛) and 𝑖 ∈ [𝑛],
Inf𝑖(𝑓) = ∑

𝜎∈Ω𝑛
𝑖∈Set(𝜎)

̂𝑓2
𝜎 = ∑

𝑆∋𝑖
𝐄[𝑓2

𝑆] .

Let the total influence Inf(𝑓) = ∑𝑖∈[𝑛] Inf𝑖(𝑓) be the sum of influences of all
coordinates on 𝑓.

The above analytical definition of influence can be generalized to the influence
of a set of coordinates. The following is defined in [90]

Definition 2.26. For a function 𝑓 ∈ 𝐿2(Ω𝑛, 𝜇⊗𝑛) and a set of coordinates 𝑆 ⊆ [𝑛],
we define the influence of 𝑆 on 𝑓 to be

Inf𝑆(𝑓) = ∑
𝜎∈Ω𝑛

𝑆⊆Set(𝜎)

̂𝑓2
𝜎 .
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The Bonami-Beckner operator, also known as noise operator, is defined as fol-
lows.

Definition 2.27. Let 0 ≤ 𝜌 ≤ 1. The Bonami-Beckner operator 𝑇𝜌 is a linear
operator mapping 𝑓 ∈ 𝐿2(Ω𝑛, 𝜇⊗𝑛) to 𝑇𝜌𝑓 as follows

(𝑇𝜌𝑓)(𝑥) = 𝐄
𝑦∼𝜌𝑥

[𝑓(𝑦)] ,

where 𝑦 is sampled by setting each bit independently to 𝑦𝑖 = 𝑥𝑖 with probability 𝜌,
and otherwise sampled according to 𝜇 with probability 1 − 𝜌.

Again we have the following Fourier/Efron-Stein characterization of 𝑇𝜌.

Proposition 2.28. For any 𝑓 ∈ 𝐿2(Ω𝑛, 𝜇⊗𝑛) and 0 ≤ 𝜌 ≤ 1,

𝑇𝜌𝑓 = ∑
𝜎∈Ω𝑛

𝜌|𝜎| ̂𝑓𝜎𝜒𝜎 .

Fact 2.29. For any 0 ≤ 𝜌, 𝜌′ ≤ 1 and 𝑓 ∈ 𝐿2(Ω𝑛, 𝜇⊗𝑛), 𝑇𝜌𝑇𝜌′𝑓 = 𝑇𝜌𝜌′𝑓.

The following Hypercontractivity Theorem proved by Bonami shows that 𝑇𝜌
“smoothens” the random variable 𝑓 .

Theorem 2.30 ([22]). Let Ω = 𝔽2 and 𝜇 be the uniform distribution. Then for
any 𝑓 ∈ 𝐿2(Ω𝑛, 𝜇⊗𝑛), 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞, and 0 ≤ 𝜌 ≤ √(𝑝 − 1)/(𝑞 − 1), we have

∥𝑇𝜌𝑓∥
𝑞

≤ ‖𝑓‖𝑝 .

Note that for any 𝑝 ≥ 1, we naturally have ‖𝑇𝜌𝑓‖𝑝 ≤ ‖𝑓‖𝑝 by Jensen’s Inequality.
The operator 𝑇𝜌 is “hypercontractive” in the sense that we can even bound the 𝑙𝑞
norm of 𝑇𝜌𝑓 by the 𝑙𝑝 norm of 𝑓 . Example 2.1 provides some intuition why we
consider such random variables as smoother and better-behaved.

We define noisy influence as Inf(𝜌)
𝑆 (𝑓) = Inf𝑆(𝑇𝜌𝑓) for all 𝑆 ⊆ [𝑛], and simi-

larly Inf(𝜌)(𝑓) = ∑ Inf(𝜌)
𝑖 (𝑓). The following bound for the total noisy influence of

functions with range [−1, 1] appeared in [90, Lemma 5.9].

Proposition 2.31 ([90]). For any 𝑓 ∶ Ω𝑛 → [−1, 1] and 0 < 𝜌 ≤ 1, we have

Inf(𝜌)(𝑓) = ∑
𝑖∈[𝑛]

Inf(𝜌)
𝑖 (𝑓) ≤ (1 − 𝜌)−1 .

More generally, for 1/2 ≤ 𝜌 < 1, we have the following upper-bound in terms of
influence of sets of coordinates

∑
𝑆⊆[𝑛],|𝑆|≤𝑚

Inf(𝜌)
𝑆 (𝑓) ≤ (𝑚/2(1 − 𝜌))𝑚 .
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The following concept of lifted functions is useful in the context of projection
games, which we will describe in more detail in Section 3.3.

We say that a mapping 𝜋 ∶ 𝑅 → 𝐿 is 𝑑-to-1 if for all 𝑙, |𝜋−1(𝑙)| = 𝑑.

Definition 2.32. Let |𝐿| = 𝑛, and |𝑅| = 𝑛𝑑, and let 𝜋 ∶ 𝑅 → 𝐿 be a 𝑑-to-1
mapping. Given function 𝑓 ∶ Ω𝑅 → ℝ, define the lifted version of 𝑓 naturally
induced by 𝜋, denoted as 𝑓𝜋 ∶ (Ω𝑑)𝐿 → ℝ, where

𝑓𝜋(𝑥𝜋) = 𝑓(𝑥) ,

where 𝑥𝜋 ∈ (Ω𝑑)𝐿 is defined as 𝑥𝜋
𝑟,𝑡 = 𝑥(𝑟,𝑡) for 𝑟 ∈ 𝐿, 𝑡 ∈ [𝑑].

In terms of influence, we have the following relation between 𝑓 and 𝑓 , due to
Wenner [104].

Proposition 2.33 ([104]). For any 𝑟, we have

Inf𝑟(𝑓) ≤ ∑
𝑟′∶𝜋(𝑟′)=𝑟

Inf𝑟′(𝑓) .

Proof. The claim follows by applying Proposition 2.25 and comparing the terms.

2.4.3 Conditional Expectation Operator
Let (Ω×Ψ, 𝜇) be two correlated probability spaces, and 𝑓 ∈ 𝐿2(Ψ, 𝜇) be a function
on Ψ. Sometimes, we may only have control over some variables in Ω, and we would
like to understand the expected behavior of 𝑓 given observations of Ω. Formally,
we define the following conditional expectation operator.

Definition 2.34. Let (Ω × Ψ, 𝜇) be two correlated spaces. The conditional expec-
tation operator 𝒰 associated with (Ω, Ψ) is the operator mapping 𝑓 ∈ 𝐿2(Ψ, 𝜇) to
𝒰𝑓 ∈ 𝐿2(Ω, 𝜇) by

(𝒰𝑓)(𝑥) = 𝐄[𝑓(𝑌 ) ∣ 𝑋 = 𝑥] ,
for 𝑥 ∈ Ω and (𝑋, 𝑌 ) ∈ Ω × Ψ is distributed according to 𝜇.

An important property we need in the analysis, due to Mossel [85], is that the
Efron-Stein decomposition commutes with the conditional expectation operator.

Proposition 2.35 ([85]). Let (Ω×Ψ, 𝜇) ∶= (∏ Ω𝑖×∏ Ψ𝑖, ⨂ 𝜇𝑖) be correlated space
and let 𝒰 ∶= ⨂ 𝒰𝑖 be the conditional expectation operator associated with Ω and
Ψ. Suppose 𝑓 ∈ 𝐿2(Ψ, 𝜇) has Efron-Stein decomposition 𝑓(𝑥) = ∑𝑆⊆[𝑛] 𝑓𝑆(𝑥𝑆).
Then the Efron-Stein decomposition of 𝒰𝑓 satisfies (𝒰𝑓)𝑆 = 𝒰(𝑓𝑆) for 𝑆 ⊆ [𝑛].

The following result, due to Mossel [85], shows that in the above setting, if
the correlations between all Ω and Ψ are less than 1, then the 𝐿2 norms of the
high-degree terms of 𝒰𝑓 are small.
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Proposition 2.36 ([85]). Assume the setting of Proposition 2.35 and that for all
𝑖, we have

𝜌(Ω𝑖, Ψ𝑖; 𝜇𝑖) ≤ 𝜌𝑖 .
Then for all 𝑓, we have

‖𝒰(𝑓𝑆)‖2 ≤ (∏
𝑖∈𝑆

𝜌𝑖) ‖𝑓𝑆‖2 .

2.4.4 The Invariance Principle
The Berry-Esseen Central Limit Theorem says that suppose we have 𝑛 independent
random variables 𝑋1, … , 𝑋𝑛, with 𝐄[𝑋𝑖] = 0 and ∑𝑖 𝐄[𝑋2

𝑖 ] = 1, then the random
variable 𝑆 = ∑𝑖 𝑋𝑖 and the standard Gaussian 𝑍 ∼ 𝒩(0, 1) are close, or more
precisely, for all 𝑢 ∈ ℝ

|Pr[𝑆 ≤ 𝑢] − Pr[𝑍 ≤ 𝑢]| ≤ 𝑐𝛾 ,

where 𝛾 = ∑𝑖 ‖𝑋𝑖‖3
3. Thus the Central Limit Theorem allows us to apply our

knowledge from Gaussian geometry to prove properties about random variables
arising from other applications. Moving between probability distributions that are
similar is a powerful paradigm, and has been used in many areas of mathematics
and theoretical computer science.

The Invariance Principle can be viewed as a generalization of the above Central
Limit Theorem. It was first proved in [87] for low degree multilinear polynomials,
and later generalized to product of functions on correlated spaces in [86]. The main
theorem in [87] studies 𝐄 [Φ(𝑄(𝑋1, … , 𝑋𝑛))], where Φ ∶ ℝ → ℝ is a smooth “test”
function, and 𝑄 is a multi-linear polynomial. The Invariance Principle says that
if the random variables 𝑋1, … , 𝑋𝑛 are “reasonable” — using terminology from
[88] — and the function 𝑄 does not have coordinates with large influence, then
𝑋1, … , 𝑋𝑛 can be replaced with standard Gaussians and the expectation does not
change much. The main theorem in [86] deals with product of functions, and the
requirement is that the functions do not share a coordinate that has large influence.
Since we do not use the original forms of these theorems in this thesis, we refer to
[87] and [86] for the precise statements of the results.

Both theorems have led to many exciting discoveries in hardness of approxima-
tion. The result in [87] implies the Majority is Stablest Theorem, which, combined
with [71] shows that the Goemans-Williamson algorithm for Max-Cut is opti-
mal under the Unique Games Conjecture. The general result in [86] was used
by Raghavendra [91] to show that certain generic algorithm is optimal for every
Max-CSP assuming the Unique Games Conjecture. Another example is a suffi-
cient condition for a wide class of Max-CSP to be hard to approximate, given by
Austrin and Mossel [10],

Since its discovery, the Invariance Principle has found numerous applications,
and has been refined and improved in different ways. For examples of their adap-
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tation in hardness of approximation based on Label-Cover hardness, see for in-
stance [89], [24], [104].

2.5 A Short Introduction to Long-Code

We now apply the tools presented earlier in the chapter to some encoding problem.
The basic setting is that we want to encode a string 𝑎 ∈ 𝔽𝑚

2 into some 𝑛-bit string
𝑏 ∈ 𝔽𝑛

2 , and we would like to test whether some given 𝑛-bit string is close to a
codeword by reading from the string as few bits as possible. Such codes are known
as Locally Testable Codes. Since this is not the main focus of this thesis, we do not
formally define what those are and go into much details. We refer to the survey by
Oded Goldreich [40] (and revisions on his website) for more information.

We describe the constructions of Long-Code, Hadamard-Code, and also
Low-Degree-Long-Code. The materials included here are mostly straightfor-
ward applications of definitions and facts in the previous sections. Long-Code was
introduced in the pioneering work of Bellare, Goldreich and Sudan [16]. They also
presented the basic structure of most of the recent inapproximability results — the
composition of Long-Code and Label-Cover. The Fourier analytic method of
analyzing Long-Code test was first introduced in [15], and used to prove hardness
of approximation results in the breakthrough paper by Håstad [51]. Application
of Low-Degree-Long-Code in the context of proving inapproximability results
was first studied in [29].

In many applications, we have some further restrictions on what strings in 𝔽𝑚
2

are valid. This could be specified by a subset of 𝔽𝑚
2 , by a set of polynomials on 𝑚

bits, or by linear or affine subspaces (note that this is a special case of specifying a
subset of 𝔽𝑚

2 by the set of common roots of a set of polynomials).
Throughout this section, the length of the codeword 𝑛 is a power of 2. It

is therefore more convenient to think of the encoding scheme as mapping words
𝑎 ∈ 𝔽𝑚

2 to functions on some 𝑟 bits 𝔽𝑟
2 → 𝔽2, where 𝑛 = 2𝑟. Also, it is usually

more convenient to think of functions on 𝑟 bits as 𝔽𝑟
2 → {−1, 1} by mapping

elements in 𝔽2 to elements in {−1, 1} according to 0 ↦ −1, and 1 ↦ −1.
Recall that P𝑚 is the linear space of all polynomials on 𝑚 bits, and P𝑚,𝑑 is

the subspace of polynomials on 𝑚 bits of degree at most 𝑑.
Let us start with Long-Code.

Definition 2.37. For 𝑎 ∈ 𝔽𝑚
2 , its Long-Code encoding is defined by

LC𝑎 ∶ P𝑚 → {−1, 1}
𝑓 ↦ (−1)𝑓(𝑎) .

The Long-Code uses 22𝑚 bits to encode 𝑚 bits. A more efficient way of
encoding is to only evaluate 𝑎 with functions in P𝑚,𝑑 for some small 𝑑. This gives
the Low-Degree-Long-Code.
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Definition 2.38. Let 1 ≤ 𝑑 ≤ 𝑚. For 𝑎 ∈ 𝔽𝑚
2 , its Low-Degree-Long-Code 𝑑

encoding is

SC𝑑,𝑎 ∶ P𝑚,𝑑 → {−1, 1}
𝑓 ↦ (−1)𝑓(𝑎) .

Taking 𝑑 = 1 in the above definition gives the Hadamard-Code. For function
𝑓 ∈ P𝑚,1, defined by 𝑓(𝑥) = ∑𝑚

𝑖=1 𝑎𝑖𝑥𝑖, we can write the evaluation of 𝑓 at 𝑥 as
the dot product 𝑓(𝑥) = ⟨𝑎, 𝑥⟩.

Definition 2.39. For 𝑎 ∈ 𝔽𝑚
2 , its Hadamard-Code encoding is

HD𝑎 ∶ 𝔽𝑚
2 → {−1, 1}
𝑥 ↦ (−1)⟨𝑎,𝑥⟩ .

The Hadamard-Code code has length 2𝑚, and the set of all codewords are
exactly the set of character functions {𝜒𝜎}𝜎∈𝔽𝑚

2
.

We use 𝛿(𝑓, 𝑔) to denote the fraction of inputs on which 𝑓 and 𝑔 differ. For a
set of functions ℱ, we say that 𝑓 is 𝜀-close to ℱ if there exists some 𝑔 ∈ ℱ, such
that 𝛿(𝑓, 𝑔) ≤ 𝜀.

Theorem 2.40. For an arbitrary function 𝑓 ∶ 𝔽𝑚
2 → {−1, 1} and a character 𝜒𝜎,

we have 𝛿(𝑓, 𝜒𝜎) = 1
2 (1 − ̂𝑓𝜎).

Proof. By definition of Fourier coefficient, we have

̂𝑓𝜎 = 𝐄
𝑥∼𝔽𝑚

2
[𝑓(𝑥)𝜒𝜎(𝑥)]

= Pr
𝑥∼𝔽𝑚

2
[𝑓(𝑥) = 𝜒𝜎(𝑥)] − Pr

𝑥∼𝔽𝑚
2

[𝑓(𝑥) ≠ 𝜒𝜎(𝑥)]

= (1 − 𝛿(𝑓, 𝜒𝜎)) − 𝛿(𝑓, 𝜒𝜎) = 1 − 2𝛿(𝑓, 𝜒𝜎) .

To test if a function 𝑓 ∶ 𝔽𝑚
2 → {−1, 1} is close to the Hadamard-Code of

some 𝑎 ∈ 𝔽𝑚
2 , we use the following famous BLR test, named after Blum, Luby and

Rubinfeld [21]:

• Choose 𝑥, 𝑦 ∼ 𝔽𝑚
2 independently.

• Accept if 𝑓(𝑥)𝑓(𝑦) = 𝑓(𝑥 + 𝑦).

Bellare, Coppersmith, Håstad, Kiwi and Sudan [15] analyzed the test using Fourier
analysis and gave a complete description of the relationship between the probability
that the BLR test succeeds and the distance between 𝑓 and some linear function.
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We now describe the key step in their analysis. The acceptance probability of the
BLR test can be written as

1
2 + 1

2 𝐄
𝑥,𝑦

[𝑓(𝑥)𝑓(𝑦)𝑓(𝑥 + 𝑦)]

= 1
2 + 1

2 ∑
𝛼,𝛽,𝛾

̂𝑓𝛼 ̂𝑓𝛽 ̂𝑓𝛾 𝐄
𝑥,𝑦

[𝜒𝛼(𝑥)𝜒𝛽(𝑦)𝜒𝛾(𝑥 + 𝑦)]

= 1
2 + 1

2 ∑
𝛼

̂𝑓3
𝛼

≤ 1
2 + 1

2 max
𝛼

∣ ̂𝑓𝛼∣ .

Note that in the last step we used Parseval’s Identity. Therefore if 𝑓 passes the
BLR test with probability 1

2 + 𝜀, then there exists 𝛼 ∈ 𝔽𝑚
2 , such that 𝑓 is 1

2 − 𝜀
close to either 𝜒𝛼 or −𝜒𝛼.

In hardness of approximation applications, we not only want to test if a given
string is close to the Hadamard-Code of some 𝑎 ∈ 𝔽𝑚

2 , we also want to make sure
that 𝑎 satisfies some constraint, for instance, that 𝑎 is in some linear subspace. Let
𝒜 ⊆ 𝔽𝑚

2 be a linear subspace. As defined in Section 2.3, we denote the dual space
of 𝒜 as 𝒜⊥.

Definition 2.41. A function is conditioned over 𝒜 if for any 𝑥 ∈ 𝔽𝑚
2 and 𝑎 ∈ 𝒜⊥,

we have 𝑓(𝑥 + 𝑎) = 𝑓(𝑥).

This is enforced by choosing a representative for each coset of 𝒜⊥, and returning
the value of 𝑓 on the representative for all inputs in the same coset.

Claim 2.42. If 𝑓 is conditioned over a linear subspace 𝒜 ⊆ 𝔽𝑚
2 , and 𝜎 ∉ 𝒜, then

̂𝑓𝜎 = 0.

Proof. Using the definition of Fourier expansion, we have

̂𝑓𝜎 = 𝐄
𝑥

[𝑓(𝑥)𝜒𝜎(𝑥)]

= 𝐄
𝑎∈𝒜⊥

𝐄
𝑥

[𝑓(𝑥 + 𝑎)𝜒𝜎(𝑥 + 𝑎)]

= 𝐄
𝑎∈𝒜⊥

𝐄
𝑥

[𝑓(𝑥)𝜒𝜎(𝑥 + 𝑎)]

= 𝐄
𝑥

[𝑓(𝑥)𝜒𝜎(𝑥) 𝐄
𝑎∈𝒜⊥

[𝜒𝜎(𝑎)]]

= ̂𝑓𝜎 𝐄
𝑎∈𝒜⊥

[𝜒𝜎(𝑎)] .

Since 𝜎 ∉ 𝒜, we have that 𝐄𝑎∈𝒜⊥ [𝜒𝜎(𝑎)] = 0, thus ̂𝑓𝜎 = 0.
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We now turn to Long-Code. Observe that there is a bijection between 𝔽𝔽𝑚
2

2 and
P𝑚. In many applications where Long-Code is used, we in fact view the codewords
as function 𝑓 ∶ 𝔽𝔽𝑚

2
2 → {−1, 1}. Such a function has Fourier decomposition

𝑓(𝑥) = ∑
𝛼∈𝔽𝔽𝑚

2
2

̂𝑓𝛼𝜒𝛼(𝑥)

= ∑
𝛼⊆𝔽𝑚

2

̂𝑓𝛼 ∏
𝑎∈𝛼

(−1)𝑥𝑎 .

The Long-Code encoding LC𝑎 is sometimes also known as a dictator function,
because the value of the function depends only on the 𝑎-th coordinate.

When testing and decoding Long-Code, we usually get some set 𝜎 ⊆ 𝔽𝑚
2 of

𝑚-bit strings that the function “depends” on. The following folding makes sure
that the sets 𝜎 with ̂𝑓𝜎 ≠ 0 is non-empty.

Definition 2.43. Function 𝑓 is folded over constant, or sometimes simply known
as odd, if for all 𝑥 ∈ 𝔽𝔽𝑚

2
2 , we have 𝑓(𝑥 + 1) = −𝑓(𝑥), where 𝑥 + 1 denotes the

string where we negate all bits of 𝑥.

To actually enforce this, we can ask for an evaluation table of size 22𝑚−1 con-
taining the value of all points with 𝑥𝟎 = 0, where the subscript 𝟎 of 𝑥 denotes the
𝑚-bit string with all entries being 0. Then, whenever we want to read 𝑓(𝑥), we
simply read entry (𝑥 − 𝑥𝟎) from the table and return (−1)𝑥𝟎 ⋅ 𝑓(𝑥 − 𝑥𝟎).
Claim 2.44. Suppose 𝑓 is folded over constant. Then for any 𝜎 ⊆ 𝔽𝑚

2 such that
|𝜎| is even, we have ̂𝑓𝜎 = 0.

Proof. Let 𝜎 ⊆ 𝔽𝑚
2 . By definition of Fourier coefficients, we have

̂𝑓𝜎 = 𝐄
𝑥

[𝑓(𝑥)𝜒𝜎(𝑥)] = 𝐄
𝑥

[𝑓(1 + 𝑥)𝜒𝜎(1 + 𝑥)]

= 𝐄
𝑥

[−𝑓(𝑥)𝜒𝜎(𝑥)𝜒𝜎(1)]

= (−1)1+|𝜎| ̂𝑓𝜎 .

This means that either |𝜎𝑖| is odd, or ̂𝑓𝜎 = 0.

For any subset 𝑆 ⊆ 𝔽𝑚
2 , the following folding trick ensures that the set 𝜎 with

̂𝑓𝜎 ≠ 0 is a subset of 𝑆.

Definition 2.45. Let 𝑆 ⊆ 𝔽𝑚
2 be a subset of indices. For 𝑥 ∈ 𝔽𝔽𝑚

2
2 , define 𝑥 ∧ 𝑆 to

be the vector where (𝑥 ∧ 𝑆)𝑎 = 𝑥𝑎 for 𝑎 ∈ 𝑆, and (𝑥 ∧ 𝑆)𝑎 = 0 for 𝑎 ∈ 𝔽𝑚
2 − 𝑆. We

say that a function is conditioned on 𝑆, if for all 𝑥 ∈ 𝔽𝔽𝑚
2

2 , we have 𝑓(𝑥) = 𝑓(𝑥∧𝑆).
In other words, the function only depends on inputs in 𝑆.

To enforce conditioning, we simply return 𝑓(𝑥 ∧ 𝑆) for any 𝑥.
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Claim 2.46. If 𝑓 is conditioned on 𝑆 and 𝜎 ⊆ 𝔽𝑚
2 is such that 𝜎 ⊈ 𝑆. Then

̂𝑓𝜎 = 0.

Proof. Fix the input inside 𝑆 to be some arbitrary 𝑥0 ∈ 𝔽𝑆
2 . Then

𝐄
𝑥

[𝑓(𝑥)𝜒𝜎(𝑥) ∣ 𝑥|𝑆 = 𝑥0] = 𝑓(𝑥0) 𝐄 [𝜒𝜎(𝑥) ∣ 𝑥|𝑆 = 𝑥0] = 0 .

Note that ̂𝑓𝜎 is just the expectation of the left hand side of the above equation over
𝑥0. Therefore ̂𝑓𝜎 = 0.

Finally, we study the behavior of Fourier characters under coordinate projection.

Definition 2.47. Let 𝜋 ∶ 𝔽𝑚
2 → 𝔽𝑚′

2 be a coordinate projection. That is, there
is some 𝑆 ⊆ [𝑚], |𝑆| = 𝑚′, such that 𝜋(𝑥) = 𝑥|𝑆. For 𝑓 ∶ 𝔽𝔽𝑚′

2
2 → {−1, 1} and

𝜋 ∶ 𝔽𝑚
2 → 𝔽𝑚′

2 , define (𝑓 ∘ 𝜋) ∶ 𝔽𝔽𝑚
2

2 → {−1, 1} by (𝑓 ∘ 𝜋)(𝑥) = 𝑓(𝑥|𝑆).

The following is easy to verify.

Claim 2.48. For any 𝑓 ∶ 𝔽𝔽𝑚′
2

2 → {−1, 1}, 𝜋 ∶ 𝔽𝑚
2 → 𝔽𝑚′

2 defined as above, and
𝜎 ⊆ 𝔽𝑚

2 , we have 𝜒𝜎(𝑓 ∘ 𝜋) = 𝜒𝜋2(𝜎)(𝑓), where 𝑦 ∈ 𝜋2(𝜎) ⊆ 𝔽𝑚′
2 iff there exists an

odd number of 𝑥 ∈ 𝜎 with 𝑥|𝑆 = 𝑦.

The above folding and conditioning over constraint set techniques also extend
to Low-Degree-Long-Code. We first describe Fourier analysis for functions in
P𝑚,𝑑 → {−1, 1}.

Recall that in Section 2.3, we define the character function 𝜒𝛽 corresponding
to 𝛽 ∈ P𝑚 as 𝜒𝛽(𝑓) = (−1)⟨𝛽,𝑓⟩.

Definition 2.49 (Character Set). Define the character set Λ𝑚,𝑑 to be the set of
functions 𝛽 ∈ P𝑚 which are minimum weight functions in the cosets of P𝑚/P⊥

𝑚,𝑑,
where ties are broken arbitrarily.

We have the following result about the character set and the “Fourier decom-
position” for functions P𝑚,𝑑 → ℝ.

Lemma 2.50 ([29]). The following are true:

• For any 𝛽, 𝛽′ ∈ P𝑚, 𝜒𝛽 = 𝜒𝛽′ if and only if 𝛽 − 𝛽′ ∈ P⊥
𝑚,𝑑.

• For 𝛽 ∈ P⊥
𝑚,𝑑, 𝜒𝛽 is the constant 1 function.

• For any 𝛽, there exists 𝛽′, such that 𝛽 − 𝛽′ ∈ P⊥
𝑚,𝑑, and |supp(𝛽′)| =

Δ(𝛽, P⊥
𝑚,𝑑). We call such 𝛽′ the minimum support function for the coset

𝛽 + P⊥
𝑚,𝑑.
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• The characters in the character set Λ𝑚,𝑑 form an orthonormal basis under
the inner product ⟨𝐴, 𝐵⟩ = 𝐄𝑓∈P𝑚,𝑑

[𝐴(𝑓)𝐵(𝑓)].
• Any function 𝐴 ∶ P𝑚,𝑑 → ℝ can be uniquely decomposed as

𝐴(𝑔) = ∑
𝛽∈Λ𝑚,𝑑

𝐴𝛽𝜒𝛽(𝑔) .

• Parseval’s identity: For any 𝐴 ∶ P𝑚,𝑑 → ℝ, ∑𝛽∈Λ𝑚,𝑑
𝐴2

𝛽 = 𝐄𝑓∼P𝑚,𝑑
[𝐴(𝑓)2].

The following lemma relates characters from different domains related by coor-
dinate projections.
Lemma 2.51 ([29]). Let 𝑚′ ≤ 𝑚, and 𝑆 ⊆ [𝑚] with |𝑆| = 𝑚′, and let 𝜋 ∶ 𝔽𝑚

2 →
𝔽𝑚′

2 be a projection, mapping 𝑥 ∈ 𝔽𝑚
2 to 𝑥|𝑆 ∈ 𝔽𝑚′

2 . Then for 𝑓 ∈ P𝑚′,𝑑 and
𝛽 ∈ P𝑚, we have

𝜒𝛽(𝑓 ∘ 𝜋) = 𝜒𝜋2(𝛽)(𝑓) ,
where 𝜋2(𝛽)(𝑦) = ∑𝑥∈𝜋−1(𝑦) 𝛽(𝑥).

The following properties of the Fourier coefficients of folded functions were also
studied in [29].
Definition 2.52. A function 𝑓 ∶ P𝑚,𝑑 → ℝ is folded over constant if for any
𝑝 ∈ P𝑚,𝑑, we have 𝑓(𝑝 + 1) = −𝑓(𝑝).
Lemma 2.53 ([29]). If 𝑓 ∶ P𝑚,𝑑 → ℝ is folded over constant, then for any 𝛼 such
that ̂𝑓𝛼 ≠ 0, we have ∑𝑥∈𝔽𝑚

2
𝛼(𝑥) = 1. In particular, we have supp(𝛼) ≠ ∅.

As for conditioning over constraints, in the case of Low-Degree-Long-Code,
we cannot condition on any set 𝑆 ⊆ 𝔽𝑚

2 . Instead, the set 𝑆 is defined by low-degree
polynomials. For our application, it suffices to have degree 3.
Definition 2.54 ([29]). Let 𝑞1, … , 𝑞𝑘 ∈ P𝑚,3, and let

𝐽(𝑞1, … , 𝑞𝑘) ∶= {∑
𝑖

𝑟𝑖𝑞𝑖 ∣ 𝑟𝑖 ∈ P𝑚,𝑑−3} .

We say that a function 𝑓 ∶ P𝑚,𝑑 → ℝ is folded over 𝐽 if 𝑓 is constant over cosets
of 𝐽 in P𝑚,𝑑.

The following lemma shows that a function folded over 𝐽 does not have weight
on small support characters that are non-zero on 𝐽 .
Lemma 2.55 ([29]). Let 𝛽 ∈ P𝑚 be such that wt(𝛽) < 2𝑑−3, and there exists some
𝑖 ∈ [𝑘] and 𝑥 ∈ supp(𝛽) with 𝑞𝑖(𝑥) ≠ 0. Then if 𝑓 ∶ P𝑚,𝑑 → ℝ is folded over 𝐽 ,
then ̂𝑓𝛽 = 0.

In the actual reduction, 𝑞1, … , 𝑞𝑘 will be the set of functions associated with
vertices in the Label-Cover instance, as described in Theorem 3.10.





Chapter 3

Constraint Satisfaction Problems

In a Constraint Satisfaction Problem (CSP) we are given some variables that may
take value from some domain, and some restrictions on what combination of values
are allowed. The goal is to find a way to assign values to the variables without
violating any restrictions.

In this chapter, we give an introduction to combinatorial CSPs. We assume
some familiarity with the basics of the theory of computing, complexity classes,
and so on. See [2] for a modern treatment. We start with a general formulation
of CSP in Section 3.1, and continue onto special classes of CSP that this thesis
focuses on. We mainly consider CSP from an optimization perspective. In this
introductory part, we also present a simple algorithm for CSP optimization with
surprisingly good performance.

In Section 3.2, we look at CSP𝑞, in which the variables have domain 𝔽𝑞. This
includes many classical examples studied in computational complexity, such as E3-
Sat and GraphColoring.

Section 3.3 is about Label-Cover, one of the basic building blocks of almost
all hardness of approximation results in recent years. Many variants of Label-
Cover are constructed and used in this thesis. We describe, in some detail, the
motivation of these variants, the key parameters that are important for proving
inapproximability results, as well as how they are constructed.

3.1 A General Framework of CSP

Let us start with the definition of CSP in its full generality.

Definition 3.1. Let 𝑉 be a set of variables, taking values from a domain 𝐷 of
finite size. A CSP instance Ψ consists of tuple Ψ = (𝒞, wt), where 𝒞 is a set of
constraints, and wt ∶ 𝒞 → [0, 1] assigns a weight to each constraint.

The constraint set has the form 𝒞 = {(𝑘𝑖, ⃗𝑠𝑖, 𝑅𝑖)}𝑟
𝑖=1, where 𝑘𝑖 ∈ ℕ+ is the

arity of the 𝑖-th constraint, ⃗𝑠𝑖 ∈ 𝑉 𝑘𝑖 is a tuple of 𝑘𝑖 variables involved in the 𝑖-th
constraint, and 𝑅𝑖 ⊆ 𝐷 ⃗𝑠𝑖 is the combination of values that are allowed.

31
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Given an assignment 𝜙 ∶ 𝑉 → 𝐷, a constraint (𝑘, ⃗𝑠, 𝑅) is satisfied if and only
if 𝜙( ⃗𝑠) ∈ 𝑅. Assignment 𝜙 is a satisfying assignment if all constraints in 𝒞 are
satisfied.

The value of an assignment 𝜙 is the total weight of all satisfied constraints

ValΨ(𝜙) = ∑
(𝑘,�⃗�,𝑅)∈𝒞

[𝜙( ⃗𝑠) ∈ 𝑅] ⋅ wt((𝑘, ⃗𝑠, 𝑅)) .

The optimum of Ψ is the maximum value of any assignment

OptΨ = max
𝜙∶𝑉 →𝐷

ValΨ(𝜙) .

Problems considered in this thesis are either unweighted — or equivalently,
assign the same weight to all constraints — or can easily be transformed into
unweighted instances with little change in value by duplicating constraints and
rounding weights. Therefore, we do not make distinction between these two cases
in this thesis.

Also, it is without loss of generality to assume that the total weight of all
constraints in an instance sums to 1. For unweighted problems, the value of an
assignment ValΨ(𝜙) is then simply the fraction of the constraints in Ψ that are
satisfied by 𝜙.

A class 𝒫 of CSPs is simply a set of CSP instances. Many fundamental com-
putational problems can be expressed as classes of CSP problems.

Example 3.2. In E3-Sat, we have 𝑉 as the set of variables. The variables take
Boolean values, therefore 𝐷 = {0, 1}. Each clause contains three literals of distinct
variables (“E3” in E3-Sat stands for “exactly three”), and the clause is satisfied
by some assignment if the value of the literals are not all 0. This can be translated
into a constraint (𝑘, ⃗𝑠, 𝑅) where:

• The arity 𝑘 = 3.

• The set of variables ⃗𝑠𝑖 contains three distinct variables.

• The set 𝑅𝑖 contains assignments to variables in ⃗𝑠𝑖 that satisfy the clause.
Therefore 𝑅𝑖 ⊆ {0, 1}3 and |𝑅𝑖| = 7.

Example 3.3. To express 3-Coloring as CSP, let 𝑉 be the set of vertices,
𝐷 = {1, 2, 3} be the set of colors, and for each edge {𝑢, 𝑣} in the graph, we have a
constraint (2, (𝑢, 𝑣), 𝐷2 − {(1, 1), (2, 2), (3, 3)}).

3.1.1 Decision versus Optimization
Given a CSP problem 𝒫, the first question we would like to answer is whether we
could decide if there is an assignment that satisfies all constraints. A more refined
question would be to find an assignment with as large a value as possible. We use
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Max-CSP to denote this optimization variant of CSP, or Max-𝒫 for some specific
class 𝒫 of CSP.

We say that an instance Ψ is 𝛽-satisfiable if the optimum Opt(Ψ) ≥ 𝛽, and when
𝛽 = 1, we simply refer to it as being satisfiable. If we instead have Opt(Ψ) ≤ 𝛽,
then we say that Ψ is at-most-𝛽-satisfiable.

Much was known about the time complexity of such problems. Many natu-
ral decision problems, such as E3-Sat and 3-Coloring, are NP-complete. The
classical paper by Schaefer gave a complete characterization for Boolean CSP de-
cision problems [98]. Given the general consensus that P ≠ NP, it seems unlikely
that there are efficient algorithms that are able to decide the satisfiability of CSP
problems.

CSP problems such as E3-Sat and 3-Coloring are connected to many other
computational problems people encounter in both theory and practice. From the
perspective of optimization, even though we could not hope to find, in a reasonable
amount of time, a 3-coloring of a given graph such that no edge is monochromatic,
we may still be happy with a 3-coloring if only 1% of the edges are violated.

Formally, we define the approximation ratio of an algorithm for some Max-CSP
problem as the following.

Definition 3.4. Let 𝒫 be a class of Max-CSP problems, and 𝒜 be an algorithm.
We say that 𝒜 is an 𝛼-approximation algorithm, for some 𝛼 ∈ [0, 1], if for any
Ψ ∈ 𝒫, ValΨ(𝒜(Ψ)) ≥ 𝛼 Opt(Ψ).

A Max-CSP problem 𝒫 is 𝛼-approximable if there is an 𝛼-approximation algo-
rithm for it.

For Max-CSP optimization problems, there is a decision variant that might
look slightly easier, known as Gap-CSP.

Definition 3.5. Let 0 ≤ 𝑠 < 𝑐 ≤ 1, and 𝒫 be a class of Max-CSP. We call 𝑐 the
completeness parameter, and 𝑠 the soundness parameter.

In the Gap𝑐,𝑠-𝒫 problem, we are promised that for any given instance Ψ, either
Opt(Ψ) ≥ 𝑐, or Opt(Ψ) ≤ 𝑠, and we are asked to decide which is the case. For
𝑐 = 1, we usually drop 𝑐 and just write Gap𝑠-𝒫.

It is straightforward to see that Gap1,1-CSP is the usual CSP decision problem,
and Gap1,𝛽-CSP is a natural generalization of it where we need to distinguish CSP
instances that are satisfiable from those that are “far” from satisfiable. For a CSP
problem 𝒫, if we have an 𝛼-approximation algorithm 𝒜, then we can solve the gap
variant Gap1,𝛽-𝒫 for any 𝛽 < 𝛼 by running 𝒜 and checking whether the solution
given by 𝒜 has value at least 𝛽. All results in this thesis in fact prove hardness
for the gap version of the problems with some gap parameters 𝑐 and 𝑠, which in
turn imply that for any 𝜀 > 0, no 𝑐/𝑠 + 𝜀-approximation algorithm exists for those
problems unless P = NP, or some other standard complexity assumption fails.

For GraphColoring, instead of trying to find a 3-coloring that maximizes the
fraction of non-monochromatic edges, we could consider the variant where we are
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given graphs that are 3-colorable, and the goal is to find a valid coloring that uses
as few colors as possible. The gap version of this problem would be to distinguish
3-colorable graphs from graphs that does not have valid coloring that uses a small
number of colors. The computational complexity of these minimization problems
sometimes behave quite differently, and we take a closer look at them and study
their connections with Max-CSP in Part III.

3.1.2 A Simple Approximation Algorithm
Before we conclude this section, let us consider a very simple algorithm for Max-
CSP.

Given a Max-CSP instance Ψ = (𝑉 , 𝐷, 𝒞) with weight function wt(⋅), the
algorithm constructs assignment 𝜙 by picking a uniformly random value from 𝐷 for
each 𝑣 ∈ 𝑉 .

It is easy to analyze the performance of this algorithm. By linearity of expec-
tation, the expected value of this assignment is

1
|𝒞| ∑

(𝑘,�⃗�,𝑅)∈𝒞

|𝑅|
|𝐷||�⃗�| .

For Max-E3-Sat, the above works out to 7
8 .

Given the extreme mindlessness of the random assignment algorithm, one would
hope that more sophisticated algorithms might give us better results. Surprisingly,
Håstad proved that for many problems, including Max-E3-Sat, this is indeed the
best possible, assuming P ≠ NP [51]. We discuss this phenomenon in more details
in Section 3.2.

Of course, for many other problems, such as MaxCut, GraphColoring, and
even many Boolean CSP problems, there are algorithms using convex optimization
tools that achieves results better than the naive random assignment algorithm. We
review some of them in later chapters.

3.2 Approximability of Max-𝑘-CSP

We now look at Max-𝑘-CSP𝑞 instances. A Max-CSP instance Ψ is a Max-𝑘-
CSP𝑞 instance if the domain of the variables has size 𝑞, and each constraint in
Ψ involves at most 𝑘 variables. Given a predicate 𝑃 ∶ 𝔽𝑞 → {0, 1}, we define the
Max-𝑃 problem as follows.

Definition 3.6. A Max-𝑘-CSP𝑞 instance Ψ = (𝑉 , 𝐷, 𝒞) is a Max-𝑃 instance if
the following conditions are satisfied:

• The domain 𝐷 = 𝔽𝑞.
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• For each constraint (𝑎, ⃗𝑠, 𝑅) ∈ 𝒞, we have that the arity 𝑎 = 𝑘, the set of
variables ⃗𝑠 contains 𝑘 distinct variables, and there exists 𝑏 ∈ 𝔽𝑘

𝑞 , such that

∀𝑥 ∈ 𝔽𝑘
𝑞 , 𝑥 ∈ 𝑅 ⇔ 𝑃(𝑥 + 𝑏) = 1.

The vector 𝑏 is sometimes called the shift of constraint (𝑎, 𝑠, 𝑅).

Let E3-Sat∶ {0, 1}3 → {0, 1} be a predicate that returns 1 unless all 3 input
bits are 0. This gives us the Max-E3-Sat problem mentioned in Section 3.1. The
vector 𝑏 ∈ 𝔽3

𝑞 in each constraint determines the sign of each literal.
Many other classical problems can be viewed as Max-𝑃 problems for some

suitable predicate 𝑃 :

• E𝑘-Lin: The predicate E𝑘-Lin∶ {0, 1}𝑘 → {0, 1} is defined as

𝑘-Lin(𝑥1, … , 𝑥𝑘) =
𝑘

∑
𝑖=1

𝑥𝑖 .

A E𝑘-Lin instance is precisely a system of linear equations over 𝔽2, in which
each equation contains exactly 𝑘 distinct variables.

• NotTwo: The predicate NotTwo ∶ {0, 1}3 → {0, 1} accepts input string
(𝑥1, 𝑥2, 𝑥3) iff exactly two of the three bits are 1.

• Hadamard𝐾: This predicate is defined for 𝐾 = 2𝑘 − 1 for 𝑘 ∈ ℕ+. The
predicate is defined on 𝐾 Boolean variables, indexed by non-empty subsets
of [𝑘]. The predicate accepts input {𝑥(𝑆)}∅≠𝑆⊆[𝑘] iff for all 𝑆 ⊆ [𝑘], |𝑆| ≥ 2,
we have

𝑥(𝑆) = ∑
𝑖∈𝑆

𝑥({𝑖}) .

• NotAllEqual𝑘: The predicate NotAllEqual𝑘∶ {0, 1}𝑘 → {0, 1} returns
1 if the 𝑘 input bits are not all equal, and 0 otherwise.

• TSA: The Tri-Sum-And predicate1 is defined on 5 Boolean variables

TSA(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 1 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ⋅ 𝑥5 .

For a predicate 𝑃 ∶ 𝔽𝑘
𝑞 → {0, 1}, it is natural to view it as a set 𝑃 ⊆ 𝔽𝑘

𝑞
containing inputs on which 𝑃 evaluates to 1. We call this the set of accepting

1 Not to be confused with the Transportation Security Administration. The Tri-Sum-And
predicate was first studied by Håstad and Khot [55]. The conference version of [55] appeared in
FOCS 2001, which was held October 8 – 11.
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inputs of 𝑃 . One important parameter is its density, defined as 𝜌(𝑃) ∶= |𝑃 |/𝑞𝑘.
For the predicates we have encountered so far, we list their density as follows:

𝜌(E3-Sat) = 7/8 , ,
𝜌(E𝑘-Lin) = 1/2, ∀𝑘 ∈ ℕ+ ,

𝜌(NotTwo) = 5/8 ,
𝜌(Hadamard𝐾) = (𝐾 + 1)/2𝐾, ∀𝐾 = 2𝑘 − 1, 𝑘 ∈ ℕ+ ,

𝜌(NAE𝑘) = 1 − 21−𝑘, ∀𝑘 ∈ ℕ+ ,
𝜌(TSA) = 1/2 .

As mentioned in Section 3.1.2, if we use the random assignment algorithm to
solve Max-𝑃 , the expected fraction of satisfied constraints is exactly 𝜌(𝑃). Sur-
prisingly, it turns out that for some predicates, this simple algorithm gives the
best approximation guarantee assuming P ≠ NP. We say that a predicate 𝑃 is ap-
proximation resistant if it is hard to achieve an approximation ratio strictly larger
than 𝜌(𝑃). In the language of Gap-CSP, predicate 𝑃 is approximation resistant
if Gap1−𝜀,𝜌(𝑃)+𝜀-𝑃 is NP-hard. In a celebrated result, Håstad [51] showed that
Gap1−𝜀,1/2+𝜀-E𝑘-Lin is NP-hard. That is, it is NP-hard to find an assignment
satisfying more than a 1/2 + 𝜀 fraction of the constraints for any 𝜀 > 0, even when
the input has an assignment that satisfies 1 − 𝜀 of them.

There has been much progress in understanding what kinds of predicates are
approximation resistant. Most of the results study predicates on domain of size
2, i.e. Boolean predicates. Some of the algorithms and hardness results can be
generalized to larger domains, but for clarity of presentation, in the remaining of this
section, we focus on the case of Boolean predicates since this is the most well-studied
case and serves well to illustrate the key issues of the Max-CSP approximability.
Also, we only look at Boolean predicates of arity 𝑘 ≥ 3, since none of the predicates
with arity less than 3 is approximation resistant [52].

For predicates of small arity (3 or 4), both algorithms and hardness results are
studied, and there is a complete characterization of approximability for predicates
of arity 3 [51, 106] and an almost complete one for predicates of size 4 thanks to
an extensive study by Gustav Hast [49]. For predicates of higher arities, a handful
of predicates were shown to be approximation resistant [51, 96, 49, 36].

The scenario where the random assignment algorithm does poorly is when 𝜌(𝑃)
is small, or in other words, the predicate 𝑃 has few accepting inputs compared to
the possible inputs. Intuitively, such CSP instances are very restrictive, therefore if
we are given a Max-𝑃 instance Ψ with the promise that it is satisfiable (or (1 − 𝜀)-
satisfiable for some small 𝜀 > 0), one might hope that there are smarter algorithms
that take advantage of the structure of the predicate 𝑃 . For satisfiable instances,
the algorithm by Trevisan [101] shows that if |𝑃 | < 𝑘+1, then Gap𝜌(𝑃)+𝜀-𝑃 is in P
for some 𝜀 > 0. Hast [50] proved that even without the guarantee that the instances
are satisfiable, Gap1−𝜀,𝜌(𝑃)+𝜀-𝑃 is still in P as long as |𝑃 | ≤ 2⌊𝑘/2⌋ + 1. More
generally, Charikar, Makarychev and Makarychev [25] gave a 𝑐𝑘/2𝑘-approximation
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algorithm for Max-𝑘-CSP, for some 𝑐 > 0.44. Makarychev and Makarychev [83]
later improved the constant 𝑐 to ≈ 0.62.

These algorithmic results are tight up to multiplicative constant factor as 𝑘 →
∞. In [97], Samorodnitsky and Trevisan showed the approximation resistance of
Hadamard𝐾 for any 𝐾 = 2𝑘 − 1 assuming the Unique Games Conjecture (UGC).
The Unique Games Conjecture was proposed by Khot in 2002 [69], and has be-
come one of the most important open problems in theoretical computer science.
We discuss more about the UGC and related problems in Section 3.3.1. Austrin
and Mossel [10] proved that assuming the UGC, 𝑃 is approximation resistant if
𝑃 contains the support of a pairwise independent distribution. In a recent break-
through [24], Siu On Chan settled the NP-hardness of Max-Hadamard𝐾 (and, up
to a constant factor, Max-𝑘-CSP in general), bypassing the UGC. Together with
the result in [53], this shows that almost all Boolean predicates are approximation
resistant.

Let us pause for a minute and take another look at approximation resistant
predicates such as E𝑘-Lin and Hadamard𝐾. Instances of these problems are just
systems of linear equations, and we can decide satisfiability for these problems in
polynomial time by Gaussian elimination. However, as we have explained above,
for both Max-E𝑘-Lin and Max-Hadamard𝐾, even for instances that are almost
fully satisfiable, Gaussian Elimination is no longer applicable and the best alterna-
tive is to just pick a random assignment. In some sense, this says that Gaussian
Elimination is not a very robust method. This is in contrast to other Max-CSP
algorithms that are based on Linear Programming (LP) or Semi-definite Program-
ming (SDP), such as the one by [25]. The LP/SDP based algorithms seem to be of
a very different nature, and approximation guarantees for most of them does not
depend critically on the satisfiability of the input instances.

This also demonstrates that the notion of approximation resistance is still far
from capturing the full picture of the computational complexity of Max-CSP. It
is possible that for satisfiable instances, generalizations of Gaussian Elimination or
some entirely new techniques are yet to be discovered. The same is true for the
hardness of Gap𝛽-CSP problems. In contrast to our understanding of approxi-
mation resistance as demonstrated above, approximation resistance on satisfiable
instances is still largely a mystery. There have been only a handful of results, and
the best soundness we have for Gap1,𝑠-CSP is still very far from the algorithmic
guarantees and what we have for Gap1−𝜀,𝑠-CSP. In Part II, we elaborate on the
technical challenges of understanding the computational complexity for Gap𝜌(𝑃)-𝑃
and show some results that partially get around these limitations.

Understanding the computational complexity of Gap-CSP is not just interest-
ing in its own right. Many hardness results for other combinatorial optimization
problems use Gap-CSP inapproximability results as a starting point, and for some
applications such as GraphColoring, having perfect completeness is believed to
be crucial. Results in Part III provide an example how improved understanding for
Gap1,𝑠-CSP lead to improved inapproximability results for graph and hypergraph
coloring.
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3.3 Label-Cover

In this section, we consider another class of CSPs — Label-Cover. It is a very
important class of CSP problem in the study of hardness of approximation, because
it is often used as the starting point for proving strong inapproximability results.
Many variants of Label-Cover have been constructed for proving approximation
hardness for different kinds of combinatorial optimization problems.

We start with the definition of a basic Label-Cover instance.

Definition 3.7. A projective Label-Cover instance ℒ is defined by a tuple

ℒ = (𝑈, 𝑉 , 𝐸, 𝐿, 𝑅, Γ, Π) .

Here 𝑈 and 𝑉 are two disjoint sets of vertices of a bipartite multigraph, 𝐸 is the
set of edges between them. The sets 𝐿 and 𝑅 are label sets for vertices in 𝑈 and 𝑉 ,
respectively. For each 𝑣 ∈ 𝑉 , there is a subset of 𝑅 indicating the labels allowed for
𝑣, given by function Γ ∶ 𝑉 → 𝒫(𝑅). The set Π is a collection of projections, one
for each edge 𝑒, 𝜋𝑒 ∶ 𝑅 → 𝐿.

A labeling 𝜎 = (𝜎𝑈, 𝜎𝑉 ) of the Label-Cover instance 𝜎𝑈 ∶ 𝑈 → 𝐿, 𝜎𝑉 ∶ 𝑉 →
𝑅 is valid iff 𝜎𝑉 (𝑣) ∈ Γ(𝑣) for all 𝑣 ∈ 𝑉 . An edge {𝑢, 𝑣} is satisfied by a labeling
𝜎 if 𝜋{𝑢,𝑣}(𝜎(𝑣)) = 𝜎(𝑢). The value of a valid labeling Valℒ(𝜎) is the fraction of
edges that are satisfied by 𝜎. The value of ℒ is the maximum value of all possible
valid labelings.

Remark. The term “projective” refers to the projection constraints in Π. We can
define Label-Cover more generally by allowing arbitrary relations in Π. The
result by Dinur, Mossel and Regev on hardness of GraphColoring [32] is a good
example of hardness of approximation results obtained from non-projective Label-
Cover instances.

In this thesis, however, we only use projective Label-Cover, thus from now
on, we refer to those simply as Label-Cover.

Remark. In many parts of the thesis — particularly when we use Label-Cover
together with Long-Code — we may assume that the label set 𝑅 only contains
valid labels. In those cases, we omit Γ from the notation.

The construction of the Label-Cover used in many hardness of approximation
results starts from the famous PCP theorem.

Theorem 3.8 (PCP Theorem [6, 7]). There exists a constant 𝛿 < 1, such that
Gap1,𝛿-E3-Sat is NP-hard.

PCP stands for “Probabilistically Checkable Proofs”, and the concept comes
from research in interactive proofs. Imagine that for a certain problem, there is an
all powerful prover that provides certificates/proofs for the instances of the prob-
lem, and a verifier, usually with limited computational resources, that is supposed
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to check whether the certificate is valid and decide the answer for the problem in-
stances. Recall that NP can be defined as the class of problems for which there is a
deterministic polynomial time verifier that always accepts correct certificates and
rejects incorrect ones. To achieve this, it seems necessary that the verifier reads
through the whole certificate. In its original formulation, the PCP theorem states
that for every problem in NP, there is a probabilistic verifier that uses 𝑂(log 𝑛) ran-
dom bits and reads only a constant number of symbols in the certificate, accepts
all correct proofs that are written in some special format, and rejects incorrect ones
with constant probability.

The formulation in Theorem 3.8 above gives a polynomial time reduction from
E3-Sat to Gap1,𝛿-E3-Sat and thus gives exactly such a verifier. Given an E3-Sat
formula 𝜙, the verifier runs the above reduction in polynomial time to get a new
E3-Sat formula 𝜓, and expects a proof that contains a satisfying assignment for 𝜓.
The verifier can now simply pick a random clause 𝐶 in 𝜓 and read from the proof
the value of the three variables in 𝐶 and check if those assignments satisfy 𝐶. If 𝜙
is unsatisfiable, then any assignment for 𝜓 violates at least a 1 − 𝛿 fraction of the
clauses in 𝜓, thus the verifier catches an incorrect proof for unsatisfiable formulas
with probability 1 − 𝛿.

The PCP Theorem gives NP-hardness for Gap1,𝛿′-Label-Cover for some 𝛿′ <
1 by the following construction: given an E3-Sat instance, construct a bipartite
graph (𝑈, 𝑉 , 𝐸), where 𝑈 corresponds to the variables and 𝑉 corresponds to the
clauses, and there is an edge between 𝑢 and 𝑣 if variable 𝑢 appears in clause 𝑣. The
label set 𝐿 = {0, 1} are the Boolean assignments for the variables, and 𝑅 = {0, 1}3

are the combination of assignments for the clauses. For each clause 𝑣 ∈ 𝑉 , Γ(𝑣)
contains the set of local assignments to variables in 𝑣 that satisfies clause 𝑣. The
constraint 𝜋{𝑢,𝑣} between variable 𝑢 and clause 𝑣 checks that the assignment to
variable 𝑢 agrees with the one assigned in clause 𝑣. It is easy to see that if the
E3-Sat instance is satisfiable, then the natural labeling according to a satisfying
assignment has value 1 for the Label-Cover instance. For the soundness part,
suppose the E3-Sat instance is at most 𝛿 satisfiable. Consider any labeling of the
Label-Cover instance. The labeling for vertices in 𝑈 gives an assignment to the
variables in the E3-Sat instance. Since the instance is at most 𝛿 satisfiable, at
least (1−𝛿) fraction of the clauses are not satisfied, therefore any labeling for those
clause variables in 𝑉 will be inconsistent with at least 1 out of 3 of its neighbors
in 𝑈 . This means that if the E3-Sat instance is at most 𝛿 satisfiable, then the
Label-Cover instance is at most 1 − (1 − 𝛿)/3 satisfiable.

The Label-Cover problem is sometimes also referred to as a 2-Prover-1-Round
(2P1R) Game. The 2 players, Alice and Bob agrees on a strategy before the game
starts. The referee then draws a pair of questions (𝑢, 𝑣), sends 𝑢 to Alice, and 𝑣 to
Bob. No communication is allowed between Alice and Bob. Alice replies with 𝐴(𝑢),
and Bob replies with 𝐵(𝑣), and the referee checks whether 𝐴(𝑢) and 𝐵(𝑣) satisfies
certain relation that is known to all parties. If the relation is such that for any
answer from Bob, there is only one acceptable answer for Alice, then this is called
a Projection Game. It is easy to see that projection games exactly correspond to
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(projective) Label-Cover instances. If in addition for each answer from Alice,
there are exactly 𝑑 possible consistent answers from Bob, this is called a 𝑑-to-1
Game. Finally, a 𝑑-to-1 game with 𝑑 = 1 is also known as a Unique Game. We will
elaborate a bit more on 𝑑-to-1 Games and Unique Games later in this section.

To boost the soundness of the Label-Cover hardness we get from Theorem 3.8,
we apply the Parallel Repetition Theorem for 2P1R games. The Parallel Repetition
Theorem was first proved by Ran Raz [93], and later strengthened and simplified
by Thomas Holenstein [57], and Anup Rao [92]. Let Ψ be an instance of a 2P1R
game. The idea of an 𝑚-round parallel repetition is that the referee now picks
𝑚 pairs of questions (𝑢1, 𝑣1), … , (𝑢𝑚, 𝑣𝑚), sends questions {𝑢1, … , 𝑢𝑚} to Alice
and {𝑣1, … , 𝑣𝑚} to Bob. Alice and Bob reply with their answers to each of the
𝑚 questions, and the referee accepts if for all 𝑖 = 1, … , 𝑚, the pair of answer
𝐴(𝑢1, … , 𝑢𝑚)𝑖 and 𝐵(𝑢1, … , 𝑢𝑚)𝑖 satisfies the relation in the original game Ψ. We
denote the repeated game by Ψ𝑚.

Here, we use the version proved by Anup Rao [92], which applies specifically to
projection games with better dependencies on parameters. In particular, the rate
at which the soundness decreases is independent of the alphabet size of the original
game.

Theorem 3.9 (Parallel Repetition [92]). There is a universal constant 𝛼 > 0,
such that for a Label-Cover instance Ψ, if Opt(Ψ) ≤ 1 − 𝜀, then Opt(Ψ𝑚) ≤
(1 − 𝜀/2)𝛼𝜀𝑚.

Combining Theorem 3.8 and 3.9, we have the following NP-hardness theorem
for the basic Label-Cover problem.

Theorem 3.10. Let 𝜀 = 𝜀(𝑛) > 0, and let 𝑡 ∶= 𝐶0 log 1/𝜀, where 𝐶0 > 0 is a
universal constant. There is a reduction that takes as input a E3-Sat instance of
size 𝑛, and outputs a Label-Cover instance ℒ = (𝑈, 𝑉 , 𝐸, 𝐿, 𝑅, Γ, Π) with the
following properties:

• The bipartite graph has size 𝑛𝑂(𝑡). The degree of the vertices in the bipartite
graph is at most exp(𝑂(𝑡)).

• The label set 𝐿 = {0, 1}𝑡, and 𝑅 = {0, 1}3𝑡.

• For each 𝑣 ∈ 𝑉 , there are 𝑡 polynomials 𝑝𝑣,1, … , 𝑝𝑣,𝑡 ∶ {0, 1}3 → {0, 1}, and
𝑡 triples 𝑠𝑣,1,…,𝑠𝑣,𝑡 ∈ (3𝑡

3 ), such that

∀𝑥 ∈ 𝑅 (𝑥 ∈ Γ(𝑣) ⇔ ∀𝑗 ∈ [𝑡], 𝑝𝑣,𝑗(𝑠𝑣,𝑗) = 0) .

Moreover, |Γ(𝑣)| = 7𝑡.

• For each edge 𝑒 ∈ 𝐸, there is a subset of indices 𝑆 ⊆ [3𝑡], |𝑆| = 𝑡, such that
for any 𝑟 ∈ 𝑅, 𝜋𝑒(𝑟) = 𝑟|𝑆.

• If the E3-Sat instance is satisfiable, then Opt(ℒ) = 1.
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• If the E3-Sat instance is not satisfiable, then Opt(ℒ) ≤ 𝜀.

The reduction runs in time 𝑛𝑂(𝑡).

The Smooth-Multi-Layered-Label-Cover problem is a variant of Label-
Cover first studied in Khot [68] for showing hardness of coloring 3-colorable 3-
uniform hypergraphs. We start with the definition of smoothness.

Definition 3.11 (Smoothness). A Label-Cover instance is 𝜉-smooth if for any
vertex 𝑣 ∈ 𝑉 and any two labels 𝑟 ≠ 𝑟′ ∈ 𝑅, over a uniformly random neighbor 𝑢
of 𝑣, we have

Pr
𝑢∼𝑣

[𝜋{𝑢,𝑣}(𝑟) = 𝜋{𝑢,𝑣}(𝑟′)] ≤ 𝜉 . (3.1)

Similar to Label-Cover, we have the following hardness result for Smooth-
Label-Cover.

Theorem 3.12. Let 𝜀 = 𝜀(𝑛) > 0, 𝜉 = 𝜉(𝑛) > 0, and 𝑡0 ∶= 𝐶0 ⋅ log 1/𝜀, 𝑡1 ∶= 𝑡0/𝜉,
where 𝐶0 > 0 is a universal constant. There is a reduction that takes as input a
E3-Sat instance of size 𝑛, and outputs a Smooth-Label-Cover instance ℒ =
(𝑈, 𝑉 , 𝐸, 𝐿, 𝑅, Γ, Π) with the following properties:

• The bipartite graph has size 𝑛𝑂(𝑡1). The degree of the vertices in the bipartite
graph is at most exp(𝑂(𝑡1)).

• The label set 𝐿 = {0, 1}3(𝑡1−𝑡0)+𝑡0 , and 𝑅 = {0, 1}3𝑡1 .

• For each 𝑣 ∈ 𝑉 , there are 𝑡1 polynomials 𝑝𝑣,1, … , 𝑝𝑣,𝑡1
∶ {0, 1}3 → {0, 1},

and 𝑡1 triples 𝑠𝑣,1,…,𝑠𝑣,𝑡1
∈ (3𝑡13 ), such that

∀𝑥 ∈ 𝑅 (𝑥 ∈ Γ(𝑣) ⇔ ∀𝑗 ∈ [𝑡1], 𝑝𝑣,𝑗(𝑠𝑣,𝑗) = 0) .

Moreover, |Γ(𝑣)| = 7𝑡1 .

• For each edge 𝑒 ∈ 𝐸, there is a subset of indices 𝑆 ⊆ [3𝑡1], |𝑆| = 3(𝑡1−𝑡0)+𝑡0,
such that for any 𝑟 ∈ 𝑅, 𝜋𝑒(𝑟) = 𝑟|𝑆.

• If the E3-Sat instance is satisfiable, then Opt(ℒ) = 1.

• If the E3-Sat instance is not satisfiable, then Opt(ℒ) ≤ 𝜀.

• The instance ℒ is 𝜉-smooth.

The reduction runs in time 𝑛𝑂(𝑡1).

Proof. Let 𝑡 ∶= 1/𝜉. Hence 𝑡1 = 𝑡 ⋅ 𝑡0.
Let ℒ0 = (𝑈0, 𝑉0, 𝐸0, 𝐿0, 𝑅0, Γ0, Π0) be the Label-Cover instance we get

from Theorem 3.8. The vertex set 𝑉 of the Smooth-Label-Cover instance we
are going to construct consists of all 𝑡-tuples of 𝑉0 vertices, and the vertex set
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𝑈 consists of all 𝑡-tuples of vertices with exactly 1 vertex from 𝑈0. For each
(𝑣1, … , 𝑣𝑡) ∈ 𝑉 , index 𝑖 ∈ [𝑡], and neighbor 𝑢 ∈ 𝑁(𝑣𝑖) of 𝑣𝑖 in ℒ, add an edge
between (𝑣1, … , 𝑣𝑖−1, 𝑢, 𝑣𝑖+1, … , 𝑣𝑡) and (𝑣1, … , 𝑣𝑡). The projection constraint nat-
urally requires the labelings to be identical on coordinate [𝑡] − {𝑖}, and for the 𝑖-th
coordinate satisfy the projection constraint 𝜋𝑢,𝑣𝑖

∈ Π0. As for Γ, a labeling for
(𝑣1, … , 𝑣𝑡) is valid if it is valid in ℒ0 for each of 𝑣1, … , 𝑣𝑡.

The completeness and soundness properties are all straightforward. As for
smoothness, observe that for 𝑟, 𝑟′ ∈ 𝑅 = 𝑅𝑡

0, if we have 𝑟 ≠ 𝑟′, then there must be
at least one 𝑗 ∈ [𝑡] such that 𝑟𝑗 ≠ 𝑟′

𝑗. Unless index 𝑗 is chosen, the projection on the
𝑗-th coordinate will be the identity projection and thus 𝑟 and 𝑟′ will be projected
to different labels in 𝐿. This happens with probability at least 1 − 1/𝑡 = 1 − 𝜉.

Multi-Layered-Label-Cover was first devised in [30] to prove strong ap-
proximation hardness for hypergraph vertex cover, and used in [36] for improv-
ing query efficiency of PCPs and hardness of approximation of Max-CSP. Briefly
speaking, a normal Label-Cover instance checks consistency of labeling between
a pair of vertices, whereas in a 𝑘-Layered-Label-Cover instance, we consider
tuples of 𝑘 − 1 independently sampled edges

({𝑢1, 𝑣1}, {𝑢2, 𝑣2}, … , {𝑢𝑘−1, 𝑣𝑘−1}) ,

the 𝑘 hybrid tuples of vertices

(𝑢1, … , 𝑢𝑖, 𝑣𝑖+1, … , 𝑣𝑘−1), for 𝑖 = 0, … , 𝑘 − 1 ,

and their corresponding labelings, and we require consistency between all pairs of
tuples. Formally, given a Label-Cover instance as defined above, the constraint
between pairs of labelings on tuples is defined as follows.

Definition 3.13. Let ⃗𝑒 = (𝑒1, … , 𝑒𝑘−1) ∈ 𝐸𝑘−1 be a vector, and let 1 ≤ 𝑖 < 𝑗 ≤ 𝑘.
Define the mapping 𝜋 ⃗𝑒,𝑗→𝑖 ∶ 𝐿𝑘−𝑗 × 𝑅𝑗−1 → 𝐿𝑘−𝑖 × 𝑅𝑖−1 as

(𝑙1, … , 𝑙𝑘−𝑗, 𝑟𝑘−𝑗+1, … , 𝑟𝑘−1)
↦ (𝑙1, … , 𝑙𝑘−𝑗, 𝜋𝑒𝑘−𝑗+1

(𝑟𝑘−𝑗+1), … , 𝜋𝑒𝑘−𝑖
(𝑟𝑘−𝑖), 𝑟𝑘−𝑖+1, … , 𝑟𝑘−1) .

It is not hard to see that the above definition preserves smoothness in the
Multi-Layered-Label-Cover instances.

Lemma 3.14. For any 𝑘-Layered-Label-Cover instance constructed from a
𝜉-Smooth-Label-Cover instance (𝑈, 𝑉 , 𝐸, 𝐿, 𝑅, Γ, Π), any positive integer 1 <
𝑖 ≤ 𝑘, vertex tuple �⃗� = (𝑢1, … , 𝑢𝑘−1) ∈ 𝑈𝑘−𝑖 × 𝑉 𝑖−1, two tuples of labelings
⃗𝑟 ≠ ⃗𝑟′ ∈ 𝐿𝑘−𝑖 × 𝑅𝑖−1, we have

Pr
⃗𝑒∼�⃗�

[𝜋 ⃗𝑒,𝑖→1( ⃗𝑟) = 𝜋 ⃗𝑒,𝑖→1( ⃗𝑟′)] < 𝜉 ,

where we sample ⃗𝑒 by picking each 𝑒𝑖 ∼ 𝑢𝑖 independently.
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Proof. If there exists 𝑗 ∈ {1, … , 𝑘 − 𝑖} such that 𝑟𝑗 ≠ 𝑟′
𝑗, then we always have

𝜋 ⃗𝑒,𝑖→1( ⃗𝑟) ≠ 𝜋 ⃗𝑒,𝑖→1( ⃗𝑟′)

and hence the above inequality holds for any 𝜉 > 0.
We now assume that for all 𝑗 ∈ {1, … , 𝑘 − 𝑖}, we have 𝑟𝑗 = 𝑟′

𝑗, and that there
exists 𝑗0 ∈ {𝑘 − 𝑖 + 1, … , 𝑘 − 1} such that 𝑟𝑗 ≠ 𝑟′

𝑗. Observe that

𝜋 ⃗𝑒,𝑖→1( ⃗𝑟) = 𝜋 ⃗𝑒,𝑖→1( ⃗𝑟′)

implies that for all 𝑗 ∈ {𝑘 − 𝑖 + 1, … , 𝑘 − 1}, we have 𝜋𝑒𝑗
(𝑟𝑗) = 𝜋𝑒𝑗

(𝑟′
𝑗), and in

particular
𝜋𝑒𝑗0

(𝑟𝑗0
) = 𝜋𝑒𝑗0

(𝑟′
𝑗0

) .
By definition of smoothness, this happens with probability less than 𝜉.

In many applications, it is often easier to work with a slightly stronger notion
of smoothness. We extend the definition of projection 𝜋 ∶ 𝑅 → 𝐿 to sets of labels
𝑆 ⊆ 𝑅 by 𝜋(𝑆) ∶= {𝑙 ∈ 𝐿 ∣ ∃𝑟 ∈ 𝑆, 𝜋(𝑟) = 𝑙}.

Definition 3.15. A Label-Cover instance is (𝐽, 𝜉)-smooth if for any vertex
𝑣 ∈ 𝑉 and any set of labels 𝑆 ⊂ 𝑅, |𝑆| ≤ 𝐽 , over a uniformly at random neighbor
𝑢 of 𝑣, we have

Pr
𝑢∼𝑣

[|𝜋{𝑢,𝑣}(𝑆)| < |𝑆|] ≤ 𝜉 . (3.2)

Similarly, a 𝑘-Layered-Label-Cover instance is (𝐽, 𝜉)-smooth if for any integer
1 < 𝑖 ≤ 𝑘, vertex tuple �⃗� = (𝑢1, … , 𝑢𝑘−1) ∈ 𝑈𝑘−𝑖 × 𝑉 𝑖−1, and set of labelings
𝑆 ⊆ 𝐿𝑘−𝑖 × 𝑅𝑖−1 with |𝑆| ≤ 𝐽 , we have

Pr
⃗𝑒∼�⃗�

[|𝜋 ⃗𝑒,𝑖→1(𝑆)| < |𝑆|] ≤ 𝜉 .

Observe that |𝜋𝑒(𝑆)| < |𝑆| if and only if there exists 𝑟 ≠ 𝑟′ ∈ 𝑆 such that
𝜋𝑒(𝑟) = 𝜋𝑒(𝑟′). By simple union bound over all possible pairs of labelings in 𝑆, we
can show that for constant 𝐽 , the above two notions of smoothness differs only by
a constant factor. The same argument applies to multi-layered instances.

Lemma 3.16. A 𝜉-smooth 𝑘-layered Label-Cover instance is (𝐽, (𝐽
2) ⋅ 𝜉)-smooth.

Combining all we have, we get the following hardness result for Smooth-𝑘-
Multi-Layered-Label-Cover. In the statement below, we omit certain size
parameters that were stated in Theorem 3.10 and Theorem 3.12 since they are not
needed in the rest of the thesis.

Theorem 3.17. Let 𝜀 = 𝜀(𝑛) > 0, 𝜉 = 𝜉(𝑛) > 0, 𝐽 > 0, and 𝑡0 ∶= 𝐶0 ⋅ log 1/𝜀,
𝑡1 ∶= 𝑡0/(𝐽2𝜉), where 𝐶0 > 0 is a universal constant. There is a reduction that
takes as input a E3-Sat instance of size 𝑛, and outputs a Smooth-𝑘-Multi-
Layered-Label-Cover instance ℒ with the following properties:
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• The size of ℒ is 𝑛𝑂(𝑡1𝑘).

• The base label set 𝐿 = {0, 1}3(𝑡1−𝑡0)+𝑡0 , and 𝑅 = {0, 1}3𝑡1 . The label set for
layer 𝑖 is 𝐿𝑘−𝑖 × 𝑅𝑖−1.

• If the E3-Sat instance is satisfiable, then there exist assignments 𝜎𝑚 ∶
𝑈𝑘−𝑚 × 𝑉 𝑚−1 → 𝐿𝑘−𝑚 × 𝑅𝑚−1(1 ≤ 𝑚 ≤ 𝑘), such that for all ⃗𝑒 =
(𝑒1, … , 𝑒𝑘−1) ∈ 𝐸𝑘−1 and all 𝑖, 𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, it holds that

𝜋 ⃗𝑒,𝑗→𝑖(𝜎𝑗(𝑢1, … , 𝑢𝑘−𝑗, 𝑣𝑘−𝑗+1, … , 𝑣𝑘−1))
= 𝜎𝑖(𝑢1, … , 𝑢𝑘−𝑖, 𝑣𝑘−𝑖+1, … , 𝑣𝑘−1) .

• If the E3-Sat instance is not satisfiable, then there are no two integers 𝑙 and
ℎ (1 ≤ 𝑙 < ℎ ≤ 𝑘) such that there exist functions 𝑃ℎ ∶ 𝑈𝑘−ℎ × 𝑉 ℎ−1 →
𝐿𝑘−ℎ × 𝑅ℎ−1 and 𝑃𝑙 ∶ 𝑈𝑘−𝑙 × 𝑉 𝑙−1 → 𝐿𝑘−𝑙 × 𝑅𝑙−1, such that for more than
𝜀 fraction of (𝑒1, … , 𝑒𝑘−1) ∈ 𝐸𝑘−1, we have

𝜋 ⃗𝑒,𝑙→1(𝑃𝑙(𝑢1, … , 𝑢𝑘−𝑙, 𝑣𝑘−𝑙+1, … , 𝑣𝑘−1))
= 𝜋 ⃗𝑒,ℎ→1(𝑃ℎ(𝑢1, … , 𝑢𝑘−ℎ, 𝑣𝑘−ℎ+1, … , 𝑣𝑘−1)) . (3.3)

If an edge tuple (𝑒1, … , 𝑒𝑘−1) satisfies the above condition, we say that it is
weakly satisfied.

• The instance ℒ is (𝐽, 𝜉)-smooth.

The reduction runs in time 𝑛𝑂(𝑡1𝑘).

Proof. The proof is similar to [36]. We start with a Smooth-Label-Cover in-
stance and turn it into a Smooth-𝑘-Multi-Layered-Label-Cover instance as
described above.

The completeness case is straightforward. For soundness, suppose there exists
1 ≤ 𝑙 < ℎ ≤ 𝑘 and functions 𝑃𝑙, 𝑃ℎ, such that (3.3) holds for more than 𝜂 fraction
of (𝑒1, … , 𝑒𝑘−1) ∼ 𝐸𝑘−1. Pick any coordinate 𝑖 ∈ {𝑘 − ℎ + 1, … , 𝑘 − 𝑙}. Then there
is a way to fix edges 𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑘−1, such that (3.3) holds for at least 𝜀
fraction of the edges 𝑒𝑖. We conclude the proof by noting that the restriction of 𝑃𝑙
and 𝑃ℎ on the 𝑖-th coordinate gives a labeling with value at least 𝜀 for the original
Smooth-Label-Cover instance.

3.3.1 The Unique Games Conjecture
The discovery of the PCP Theorem and subsequent improvements have led to many
hardness of approximation results, many of which are optimal unless P = NP. De-
spite this, some problems turned out to be quite resilient, examples include Mini-
mumVertexCover, GraphColoring, MaxCut, and many optimization prob-
lems on graphs. In 2002, Khot introduced a conjecture known as the Unique Games
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Conjecture (UGC) as a possible solution [69]. The UGC had inspired a remarkable
number of works, and many optimal inapproximability results has been achieved
assuming UGC, including the optimality of the Goemans-Williamson algorithm for
MaxCut [71], a 2 − 𝜀 hardness for MinimumVertexCover [73], optimal approx-
imability for Max-E2-Sat [8], approximation resistance for all ordering problems
[43], characterization of approximation resistant predicates [10, 79, 53], to name
just a few. In a beautiful result [91], Raghavendra shows that for every Max-CSP,
the integrality gap for a natural SDP relaxation is the same as the inapproxima-
bility threshold for the CSP, assuming the UGC. In other words, the natural SDP
relaxation gives the best efficient approximation algorithm.

The UGC has become one of the most important open problems in theoreti-
cal computer science. We refer to a comprehensive survey by Khot [70] for more
historical context, the implications of UGC, and its connections with other related
questions.

Much effort has been devoted to proving or disproving UGC. In 2005, Khot and
Vishnoi proved that the canonical SDP algorithms fail to solve Unique-Games
[80, 81]. Similar results demonstrating the limitations of other LP and SDP al-
gorithms were subsequently proved in [75, 13]. From the other side, Arora, Khot,
Kolla, Steurer, Tulsiani and Vishnoi showed that Unique-Games is easy on ex-
panding constraint graphs [5], which implies that Unique-Games is easy for ran-
dom instances. This is in contrast to NP-hard problems such as E3-Sat, for which
people believe that even random instances are hard. In 2010, Arora, Barak and
Steurer gave a subexponential time algorithm for Unique-Games [3]. Recently in
[12], it was shown that the Sum-of-Squares method of constant degree solves the
instances that are hard for algorithms in [81, 75, 13]. To sum up, although there
is no polynomial time algorithm that solves Unique-Games in the worst case,
there is no class of Unique-Games instances that are hard for current algorithmic
techniques either. We refer to [14] for a survey on recent works.

Earlier in Section 3.3, we formulated Unique-Games as a special case of 2-
Prover-1-Round games. We now formally define the Unique-Games Problem as
follows.

Definition 3.18. A Unique-Games instance is a Label-Cover instance

𝒰 = (𝑈, 𝑉 , 𝐸, 𝐿, 𝑅, Π) ,

where the label sets 𝐿 = 𝑅, and the edge projections in Π are permutations.
We can specify a Unique-Games instance by a tuple (𝑈, 𝑉 , 𝐸, 𝐿, Π).
Let 𝒰 be a Unique-Games instance. If Opt(𝒰) = 1, we can find such a

labeling in polynomial time by trying out all labels for one arbitrary vertex in each
connected component in 𝒰, and then propagate the value to the whole connected
component with the permutation constraints, and start over with a different label if
at some point we reach a conflict. The Unique Games Conjecture states that when
Opt(𝒰) = 1 − 𝜀 for some small constant 𝜀, it is very hard to find a good labeling.
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Conjecture 3.19 ([69]). For every 𝜀, 𝛿 > 0, there exists a constant 𝑙 = 𝑙(𝜀, 𝛿),
such that given a Unique-Games instance 𝒰 = (𝑈, 𝑉 , 𝐸, 𝐿, Π) with |𝐿| = 𝑙, it is
NP-hard to distinguish between the following two cases:

• Completeness: Opt(𝒰) ≥ 1 − 𝜀.

• Soundness: Opt(𝒰) ≤ 𝛿.

In many cases, having perfect completeness — where we have Opt(𝒰) = 1 in
the completeness case — is desirable. This motivates the following 𝑑-to-1 game.

Definition 3.20. Let 𝐿, 𝑅 be label sets such that |𝑅| = 𝑑|𝐿|. A projection 𝜋 ∶ 𝑅 →
𝐿 is 𝑑-to-1 if for all 𝑙 ∈ 𝐿, the pre-image |𝜋−1(𝑙)| = 𝑑.

For a fixed 𝑑, a Label-Cover instance (𝑈, 𝑉 , 𝐸, 𝐿, 𝑅, Π) is a 𝑑-to-1 Label-
Cover instance if |𝑅| = 𝑑|𝐿| and all mappings 𝜋𝑒 ∈ Π are 𝑑-to-1.

The following set of conjectures (one for each 𝑑) is known as the 𝑑-to-1 Conjec-
tures.

Conjecture 3.21 ([69]). For every 𝛿 > 0, there exists a constant 𝑙 = 𝑙(𝛿), such that
given a 𝑑-to-1 Label-Cover instance ℒ = (𝑈, 𝑉 , 𝐸, 𝐿, 𝑅, Π) with |𝐿| ≤ |𝑅| = 𝑙,
it is NP-hard to distinguish between the following two cases:

• Completeness: Opt(ℒ) = 1.

• Soundness: Opt(ℒ) ≤ 𝛿.

Remark. The 𝑑-to-1 Label-Cover problem becomes harder as 𝑑 increases. In
particular, Theorem 3.10 implies that we in fact have NP-hardness for 𝑑 = poly(1/𝛿).

Assuming the 2-to-1 Conjecture, Dinur, Mossel and Regev [32] proved that it is
NP-hard to 𝑞′-color a 𝑞-colorable graph for any 4 ≤ 𝑞 < 𝑞′, and a similar hardness
result for 3 = 𝑞 < 𝑞′ assuming a variant of 𝑑-to-1 Conjecture. O’Donnell and Wu
proved optimal hardness for Max-3-CSP assuming the 𝑑-to-1 Conjectures for any
𝑑 [90]. As we will discuss in more detail in Chapter 4, some problems that were
proved to be hard assuming the 𝑑-to-1 Conjectures, such as the one by O’Donnell
and Wu, were later proved to be hard only assuming P ≠ NP.

It is worth noting that compared to the UGC, there have been far fewer results
assuming the 𝑑-to-1 Conjectures. It seems that the chasm between “1-to-1” and
“2-to-1” is much wider than that between “2-to-1” and “poly(1/𝛿)-to-1”. This
perhaps illustrates some of the limitations of current techniques in handling 𝑑-to-1
projections for 𝑑 > 1.
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Chapter 4

Predicates Strictly Dominating
E𝑘-LIN

We give an introduction to proving inapproximability results and demonstrate how
the machinery described in Part I are typically assembled.

As we have discussed in Section 3.2, deciding Gap1−𝜀,1/2+𝜀-E𝑘-Lin is NP-hard,
but the problem becomes solvable in polynomial time by Gaussian Elimination when
the completeness parameter becomes 1. One could ask if this is still true for some
other predicate 𝑃 that looks similar to E𝑘-Lin. In this chapter, we prove that for
any 𝑘 ≥ 4 and 𝑘-arity predicate 𝑃 that strictly contains E𝑘-Lin, the gap problem
Gap𝜌(𝑃)+𝜀-𝑃 is hard, assuming the 𝑑-to-1 Conjectures.

The reduction is very similar to that in [90], where the authors proved hardness
for Gap5/8+𝜀-NotTwo assuming the 𝑑-to-1 Conjecture. In fact, we can view the
NotTwo predicate as accepting input (1, 1, 1) in addition to what was accepted
by the E3-Lin predicate. Note that throughout this chapter and Chapter 5, we use
the −1/1 notation rather than 0/1.

For both Gap-NotTwo and the result presented in here, NP-hardness results
have been proved without assuming the 𝑑-to-1 Conjecture [54, 104] with much more
sophisticated constructions.

4.1 The Label-Cover–Long-Code Framework

Most of the recent inapproximability results are based on Label-Cover and Long-
Code. In this section, we describe the main idea of such reductions.

The starting point of such a reduction is usually some NP-hardness results for
some variant of Label-Cover, such as Theorem 3.10, or Unique Games or 𝑑-to-1
Games as described in Section 3.3.1.

Let ℒ = (𝑈, 𝑉 , 𝐸, 𝐿, 𝑅, Π, Γ) be a Label-Cover instance. Consider a Boolean
predicate 𝑃 of arity 𝑘. For each vertex 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 , we expect functions
𝑓𝑢 ∶ {−1, 1}𝐿 → {−1, 1} and 𝑔𝑣 ∶ {−1, 1}𝑅 → {−1, 1}. These are supposed to be
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the Long-Code encodings of the labelings for 𝑢 and 𝑣. Recall from Section 2.5 that
𝑓𝑢 and 𝑔𝑣 are Long-Code encodings for label 𝑙 ∈ 𝐿, 𝑟 ∈ 𝑅 if for each 𝑥 ∈ {−1, 1}𝐿,
𝑓𝑢(𝑥) = 𝑥𝑙, and for each 𝑦 ∈ {−1, 1}𝑅, 𝑔𝑣(𝑦) = 𝑦𝑟. The variables in the Gap-𝑃
instance we produce are exactly the entries of these functions. Therefore, for each
𝑢 ∈ 𝑈 , we have 2|𝐿| Boolean variables, and for each 𝑣 ∈ 𝑉 , we have 2|𝑅| Boolean
variables.

We require that the functions 𝑓𝑢 and 𝑔𝑣 be folded over constant, that is, for
any 𝑥 ∈ {−1, 1}𝐿, 𝑦 ∈ {−1, 1}𝑅,

𝑓𝑢(−𝑥) = −𝑓𝑢(𝑥) and 𝑔𝑣(−𝑦) = −𝑔𝑣(𝑦) .

As described in Section 2.5, we can enforce this by choosing some 𝑙0 ∈ 𝐿 and
𝑟0 ∈ 𝑅, and return 𝑥𝑙0

⋅ 𝑓𝑢(𝑥′) for 𝑓𝑢(𝑥) and 𝑦𝑟0
⋅ 𝑔𝑣(𝑦′) for 𝑔𝑣(𝑦), where 𝑥′ is

identical to 𝑥 except in coordinate 𝑙0, where 𝑥′
𝑙0

= 1, and 𝑦′ is defined similarly.
The signs of 𝑥𝑙0

and 𝑦𝑟0
correspond to the signs of the Boolean variables 𝑓𝑢(𝑥′)

and 𝑔𝑣(𝑦′) in the output CSP. Hence in the actual reduction we only use 2|𝐿|−1

Boolean variables for each 𝑢 ∈ 𝑈 and 2|𝑅|−1 variables for each 𝑣 ∈ 𝑉 . We can verify
that functions that are actual Long-Code encodings are all folded over constant.

In a correct proof for a satisfiable Label-Cover instance, the functions are
Long-Code for the corresponding labelings of 𝑢 and 𝑣

𝑓𝑢(𝑥) = 𝑥{𝜎(𝑢)} and 𝑔𝑣(𝑦) = 𝑦{𝜎(𝑣)} .

We now describe the constraints. The goal is to verify that the functions 𝑓𝑢
and 𝑔𝑣 are close to Long-Code encoding of labelings with high value.

For an edge {𝑢, 𝑣} in the Label-Cover, we sample queries

(𝑥(1), … , 𝑥(𝑚), 𝑦(𝑚+1), … , 𝑦(𝑤))

according to some carefully chosen test distribution 𝒯. This corresponds to adding
to the CSP instance a constraint

𝑃(𝑥(1), … , 𝑥(𝑚), 𝑦(𝑚+1), … , 𝑦(𝑤))

with weight equal to the probability of the query.

Remark. It is of course not necessary for all 𝑥 queries to come before the 𝑦
queries, and there are many other flexibilities with the distribution, depending on
the particular use cases. The above is just an example to illustrate the main ideas.

The distribution 𝒯 has the property that for any 𝑙 ∈ 𝐿 and 𝑟 ∈ 𝑅 such that
𝜋(𝑢,𝑣)(𝑟) = 𝑙, the predicate 𝑃 accepts

(𝑥(1)
𝑙 , … , 𝑥(𝑚)

𝑙 , 𝑦(𝑚+1)
𝑟 , … , 𝑦(𝑤)

𝑟 )

with probability 1 (or 1 − 𝜀 for some small constant 𝜀 if we are considering non-
perfect completeness). This guarantees that if 𝑓𝑢 and 𝑔𝑣 are Long-Code encodings
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of a consistent labeling of 𝑢 and 𝑣, then all (or a (1−𝜀) fraction) of the 𝑃 constraints
related to edge {𝑢, 𝑣} is satisfied.

Let the value of an edge be the following expectation

𝐄
(𝑥(1),…,𝑥(𝑚),𝑦(𝑚+1),…,𝑦(𝑤))∼𝒯

[𝑃 (𝑓𝑢(𝑥(1)), … , 𝑓𝑢(𝑥(𝑚)), 𝑔𝑣(𝑦(𝑚+1)), … , 𝑔𝑣(𝑦(𝑤)))] .
(4.1)

Observe that from the above discussion, in the completeness case where the Label-
Cover instance has an assignment that satisfies all the edges, setting 𝑓𝑢 and 𝑔𝑣
to the long code of the labelings would give value 1 (or close to 1) for the above
expectation.

In the soundness case, of course the functions 𝑓𝑢 and 𝑔𝑣 are not guaranteed to
be Long-Code. Typically, when proving approximation resistance, we start the
analysis by taking the Fourier expansion of predicate 𝑃 in Equation (4.1). The
constant term in the expansion is exactly the density of 𝑃 . We then show that if
for some non-constant terms we have | 𝐄[∏ 𝑓𝑢 ∏ 𝑔𝑣]| ≥ 𝛿 for some small constant
𝛿 > 0, then we can find a good labeling for the Label-Cover instance we started
with, allowing us to distinguish between the completeness case and the soundness
case. In some cases we can show that all possible non-constant terms—including
those that do not appear in the expansion of 𝑃—are small, and this implies that
predicate 𝑃 is useless in the sense of [9], a stronger notion of inapproximability. If
a predicate 𝑃 is useless, then for any other predicate 𝑄 ⊇ 𝑃 , the problem Gap-𝑄
is also hard.

It is not hard to adapt the above reduction to Multi-Layered-Label-Cover.
Instead of encoding the labelings of single vertices as long codes, we encode labelings
for the hybrid vertex tuples. The rest of the analysis is similar.

4.2 The Predicate and the Test Distribution

The goal of this chapter is to prove that for any 𝑘 ≥ 4 all 𝑃 ⊉ Ek−Lin are useless. It
suffices to establish this for 𝑃 with |𝑃 | = |E𝑘-Lin|+1, and by combining negations
of inputs, we further assume without loss of generality that 𝑃 ∶= E𝑘-Lin ∪ {1𝑘}.

We now describe the test distribution. The starting point of our reduction is a
𝑑-to-1 Label-Cover. Pick a random edge 𝑒 = {𝑢, 𝑣}. We view the function 𝑓𝑢
as 𝑓𝑢 ∶ ∏𝑙∈𝐿 𝒳𝑙 → {−1, 1}, where each 𝒳𝑙 = {−1, 1}(𝑙) and the function 𝑔𝑣 as
𝑔𝑣 ∶ ∏𝑙∈𝐿 𝒴𝑙

𝑗 → {−1, 1}, where 𝒴𝑙
𝑗 = {−1, 1}𝜋−1

𝑒 (𝑙) for each 𝑗 = 2, … , 𝑘. The test
distribution 𝒯𝑒 is a distribution over the following product space

∏
𝑙∈𝐿

(𝒳𝑙 ×
𝑘

∏
𝑗=2

𝒴𝑙
𝑗) ≃ (∏

𝑙∈𝐿
𝒳𝑙) ×

𝑘
∏
𝑗=2

(∏
𝑙∈𝐿

𝒴𝑙
𝑗) .

In fact, for each 𝑙 ∈ 𝐿, we define a distribution 𝒯𝑙
𝑒 on 𝒳𝑙 × ∏𝑘

𝑗=2 𝒴𝑙
𝑗, and the

final distribution 𝒯𝑒 = ⨂𝑙∈𝐿 𝒯𝑙
𝑒. The individual distribution 𝒯𝑙

𝑒 only depends
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on 𝑑, and we can simply view it as a distribution on {−1, 1} × ∏𝑘
𝑗=2 {−1, 1}𝑑.

Furthermore, the distributions for different 𝑙 ∈ 𝐿 are actually constructed in a
uniform way. We define a family of distributions {−1, 1} × ∏𝑘

𝑗=2 {−1, 1}𝑑, which
we now write as 𝒳 × ∏𝑘

𝑗=2 𝒴𝑗 for simplicity.
The test distribution is a combination of several simple distributions. The first

such distribution is the E𝑘-Lin distribution which we denote by ℋ in its simple
form and ℋ(𝑑) in its product form.

Definition 4.1. Define distribution ℋ on (𝑥, 𝑦2, … , 𝑦𝑘) by sampling as follows:
pick 𝑥, 𝑦2, … , 𝑦𝑘−1 independently and uniformly at random from {−1, 1}, then set
𝑦𝑘 = −𝑥 ⋅ ∏𝑘−1

𝑗=2 𝑦𝑗.
Define distribution ℋ(𝑑) on 𝒳 × ∏𝑘

𝑗=2 𝒴𝑗 as follows: pick 𝑥 and 𝑦𝑟,𝑗 inde-
pendently and uniformly at random for 𝑟 ∈ [𝑑] and 𝑗 = 2, … , 𝑘 − 1, then for each
𝑟 ∈ [𝑑], set 𝑦𝑟,𝑘 = −𝑥 ⋅ ∏𝑘−1

𝑗=2 𝑦𝑟,𝑗.

Next, we define the “noise” distribution. Denote 𝛼 ∶= 1𝑘 ∉ E𝑘-Lin. Observe
that if we define 𝛼′ to be the same as 𝛼 except for the first bit 𝛼′

1 = −1, then we
have 𝛼′ ∈ E𝑘-Lin. To generate the noise distribution, we first generate the parity
distribution with some bias on the first bit. The difference now is that in the noise
distribution, whenever we get 𝛼′ ∈ E𝑘-Lin, we switch to 𝛼. We assign probabilities
so that the marginal on the first bit is uniform.

Definition 4.2. Define 𝒩 on {−1, 1}𝑘 as follows: generate 𝑦2, … , 𝑦𝑘−1 indepen-
dently and uniformly at random, and with probability 2𝑘−3/(2𝑘−2 − 1), set 𝑥 = −1,
and 𝑥 = 1 otherwise. Then let 𝑦𝑘 = −𝑥 ∏𝑘−1

𝑗=2 𝑦𝑗, and flip 𝑥 if 𝑥 = −1 and
𝑦2 = … = 𝑦𝑘 = 1.

For 𝑟 ∈ [𝑑], define 𝒩𝑟(𝑑) on 𝒳 × ∏ 𝒴𝑗: generate (𝑥, 𝑦𝑟,2, … , 𝑦𝑟,𝑘) ∼ 𝒩, then
generate (𝑦𝑖,2, … , 𝑦𝑖,𝑘) for all 𝑖 ∈ ([𝑑] − {𝑟}) according to ℋ and 𝑥.

Define 𝒩(𝑑) = (∑𝑟∈[𝑑] 𝒩𝑟(𝑑))/𝑑.

We sample 𝒩(𝑑) by first choosing a random 𝑟 ∈ [𝑑] for which we generate the
noise distribution according to 𝒩, and then fill in the rest according to ℋ condi-
tioned on the given 𝑥 bit. We can view this as a generalization of the distribution
𝒩 used in [90].

Our distribution 𝒩 has the nice property that the marginals are uniform if we
condition on 𝑦𝑆 where 𝑆 ⊊ {2, … , 𝑘}.

Lemma 4.3. Let 𝑆 ⊊ {2, … , 𝑘} be a set of coordinates, and let 𝑦𝑆 be an assign-
ment to the bits in 𝑆. Then Pr𝐲∼𝒩[𝐲𝑆 = 𝑦𝑆] = 2−|𝑆|. Moreover, the marginal
distribution over 𝒳 is also uniform.

Proof. If 𝑘 ∉ 𝑆, then since {𝑦𝑖}𝑖∈𝑆 are picked uniformly at random, the statement
holds.
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For 𝑆 ∋ 𝑘, we can change the role between 𝑦𝑘 and 𝑦𝑗 for some 𝑗 ∉ 𝑆. This does
not affect the probability because the flip in the last step only affects 𝑥, and we are
not conditioning on 𝑥.

For the marginal of 𝒳, note that in the first step, 𝑥 = −1 with probability
2𝑘−3/(2𝑘−2 − 1), and this will remain the case at the end unless (𝑥, 𝑦2, … , 𝑦𝑘−1) =
(−1, 1, … , 1). Thus the probability that 𝑥 = −1 is (1−2−(𝑘−2)) ⋅ 2𝑘−3/(2𝑘−2 −1) =
1/2.

We are now ready to define the test distribution 𝒯𝑒.

Definition 4.4. For 0 < 𝛾 < 1, define distribution ℋ𝛾(𝑑) = (1 − 𝛾)ℋ(𝑑) +
𝛾𝒩(𝑑) = (1 − 𝛾)ℋ(𝑑) + 𝛾(∑𝑠∈[𝑑] 𝒩𝑠(𝑑))/𝑑. For each 𝑙 ∈ 𝐿, define 𝒯𝑙

𝑒 to be
ℋ𝛾(𝑑). The test distribution 𝒯𝑒 ∶= ⨂𝑙∈𝐿 𝒯𝑙

𝑒.

We have the following correlation bound for 𝜌(𝒳, ∏𝑖∈𝑆 𝒴𝑖; ℋ𝛾(𝑑)) for 𝑆 ⊊
{2, … , 𝑘}. The proof is similar to that of Lemma 5.2 of [90].

Lemma 4.5. For all 𝑆 ⊊ {2, … , 𝑘}, we have 𝜌(𝒳, ∏𝑖∈𝑆 𝒴𝑖; ℋ𝛾(𝑑)) ≤ 𝛾.

Proof. Suppose 𝑓 ∶ 𝒳 → ℝ and 𝑔 ∶ ∏𝑖∈𝑆 𝒴𝑖 → ℝ are any functions with 𝐄[𝑓] =
𝐄[𝑔] = 0, 𝐄[𝑓2] ≤ 1 and 𝐄[𝑔2] ≤ 1 under the uniform distribution. Then

𝐄
ℋ𝛾(𝑑)

[𝑓(𝑥)𝑔(𝐲)] = (1 − 𝛾) 𝐄
ℋ(𝑑)

[𝑓(𝑥)𝑔(𝐲)] + 𝛾 𝐄
𝒩(𝑑)

[𝑓(𝑥)𝑔(𝐲)] = 𝛾 𝐄
𝒩(𝑑)

[𝑓(𝑥)𝑔(𝐲)] ,

because 𝑥 and 𝐲 are independent under ℋ(𝑑) as long as 𝑆 ⊊ {2, … , 𝑘}. By Cauchy-
Schwarz, we have

𝛾 𝐄
𝒩(𝑑)

[𝑓(𝑥)𝑔(𝐲)] ≤ 𝛾√ 𝐄
𝒩(𝑑)

[𝑓(𝑥)2]√ 𝐄
𝒩(𝑑)

[𝑔(𝐲)2] ≤ 𝛾 .

By definition of correlation, we conclude that 𝜌(𝒳, ∏𝑖∈𝑆 𝒴𝑖; ℋ𝛾(𝑑)) ≤ 𝛾.

When 𝑆 = {2, … , 𝑘}, we have perfect correlation between 𝒳 and ∏𝑖∈𝑆 𝒴𝑖. This
makes it difficult to bound product terms such as ∣𝐄 [𝑓(𝑥) ∏𝑖∈𝑆 𝑔(𝑦𝑖)]∣. For any
𝑘0 ∈ {2, … , 𝑘}, we do have correlation strictly smaller than 1 between 𝒳×∏𝑖≠𝑘0

𝒴𝑖
and 𝒴𝑘0

.

Lemma 4.6. Let
𝛽 = 𝛾 ⋅ (2𝑘−3 − 1)

(2𝑘−2 − 1) ⋅ 2(𝑘−2)𝑑 ⋅ 𝑑
be a lower-bound of the least probability atom in supp(ℋ𝛾(𝑑)). For any 𝑘0 ∈
{2, … , 𝑘}, we have 𝜌(𝒳 × ∏𝑖≠𝑘0

𝒴𝑖, 𝒴𝑘0
, ℋ𝛾(𝑑)) ≤ 1 − 𝛽2/2.
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Proof. For notational simplicity, we only prove this for 𝑘0 = 𝑘, since all coordinates
are entirely symmetric. We bound the correlation by Lemma 2.7. To apply the
lemma, we only need to show that the distribution is connected. Fix some 𝑠 ∈ [𝑑],
and (𝑤1, … , 𝑤𝑑) ∈ 𝒴𝑘 be an arbitrary vertex on the right side of the bipartite
graph, and (𝑤′

1, … , 𝑤′
𝑑) be the right vertex that has 𝑤′

𝑗 = 𝑤𝑗 for 𝑗 ≠ 𝑠 and 𝑤′
𝑠 = 1.

We claim that for any 𝑠 ∈ [𝑑], (𝑤1, … , 𝑤𝑑) and (𝑤′
1, … , 𝑤′

𝑑) are connected. In fact,
if we already have 𝑤𝑠 = 1, then these two are the same vertex and we are done.
Otherwise, we pick a left vertex that is connected to both of them as follows: denote
the vertex by (𝑥, 𝑦2,1, 𝑦2,2, … , 𝑦2,𝑑, 𝑦3,1, … , 𝑦𝑘−1,𝑑). Set 𝑥 = 1. For 𝑗 ≠ 𝑠, we let

(𝑦2,𝑗, 𝑦3,𝑗, … , 𝑦𝑘−2,𝑗, 𝑦𝑘−1,𝑗) = (1, 1, 1, … , 1, −𝑤𝑗) ,

and for 𝑗 = 𝑠, let

(𝑦2,𝑠, 𝑦3,𝑠, … , 𝑦𝑘−2,𝑠, 𝑦𝑘−1,𝑠) = (1, 1, … , 1) .

For any 𝑗 ≠ 𝑠, we have that (𝑥, 𝑦2,𝑗, … , 𝑦𝑘−1,𝑗, 𝑤𝑗) ∈ ℋ, and for 𝑗 = 𝑠, we have
that (𝑥, 𝑦2,𝑠, … , 𝑦𝑘−1,𝑠, 𝑤𝑠) ∈ ℋ and (𝑥, 𝑦2,𝑠, … , 𝑦𝑘−1,𝑠, 𝑤′

𝑠) ∈ 𝒩(𝑑). Therefore
it is connected to (𝑤1, … , 𝑤𝑑) due to ℋ(𝑑) and to (𝑤′

1, … , 𝑤′
𝑑) due to 𝒩𝑠(𝑑).

We conclude that all right vertices are connected to the right vertex (1, 1, … , 1).
It is also easy to see that all left vertices are at least connected with one right
vertex, therefore the whole graph is connected.

Similar to [90], we need to pass from ℋ𝛾(𝑑) to a new distribution ℐ𝛾(𝑑) with
almost no correlation between 𝒳 and ∏ 𝒴𝑖.

Definition 4.7. Define distribution ℐ(𝑑) on 𝒳 × ∏𝑘
𝑖=2 𝒴𝑖 as follows: first sample

from ℋ(𝑑), then uniformly rerandomize 𝑥. Define ℐ𝛾(𝑑) ∶= (1 − 𝛾)ℐ(𝑑) + 𝛾𝒩(𝑑).

We bound 𝜌(𝒳, ∏ 𝒴𝑖; ℐ𝛾(𝑑)) in the following lemma.

Lemma 4.8. 𝜌(𝒳, ∏𝑘
𝑖=2 𝒴𝑖; ℐ𝛾(𝑑)) ≤ √𝛾.

The proof of this lemma is almost identical to Lemma 5.4 of [90].

Proof. Let 𝑓 ∶ 𝒳 → ℝ be any function with 𝐄[𝑓] = 0 and 𝐄[𝑓2] ≤ 1 under
the uniform distribution (which is the marginal of 𝒳 under ℐ(𝑑) and 𝒩(𝑑), and
hence ℐ𝛾(𝑑)). Let 𝐺 ∶ ∏𝑘

𝑖=2 𝒴𝑖 → ℝ be any function with 𝐄ℐ𝛾(𝑑)[𝐺] = 0 and
𝐄ℐ𝛾(𝑑)[𝐺2] ≤ 1. Decomposing ℐ𝛾(𝑑), we get

1 ≥ 𝐄
ℐ𝛾(𝑑)

[𝐺2] = (1 − 𝛾) 𝐄
ℐ(𝑑)

[𝐺2] + 𝛾 𝐄
𝒩(𝑑)

[𝐺2] ≥ 𝛾 𝐄
𝒩(𝑑)

[𝐺2] .

This implies
𝐄

𝒩(𝑑)
[𝐺2] ≤ 1/𝛾 .
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Observe that

𝐄
ℐ𝛾(𝑑)

[𝑓(𝑥)𝐺(𝑦2, … , 𝑦𝑘)]

= (1 − 𝛾) 𝐄
ℐ(𝑑)

[𝑓(𝑥)𝐺(𝑦2, … , 𝑦𝑘)] + 𝛾 𝐄
𝒩(𝑑)

[𝑓(𝑥)𝐺(𝑦2, … , 𝑦𝑘)]

= (1 − 𝛾) 𝐄
ℐ(𝑑)

[𝑓(𝑥)] 𝐄
ℐ(𝑑)

[𝐺(𝑦2, … , 𝑦𝑘)] + 𝛾 𝐄
𝒩(𝑑)

[𝑓(𝑥)𝐺(𝑦2, … , 𝑦𝑘)]

≤ (1 − 𝛾) 𝐄
ℐ(𝑑)

[𝑓(𝑥)] 𝐄
ℐ(𝑑)

[𝐺(𝑦2, … , 𝑦𝑘)] + 𝛾√ 𝐄
𝒩(𝑑)

[𝑓(𝑥)2]√ 𝐄
𝒩(𝑑)

[𝐺(𝑦2, … , 𝑦𝑘)2] .

We know that 𝐄ℐ(𝑑)[𝑓] = 0, and that

𝛾√ 𝐄
𝒩(𝑑)

[𝑓(𝑥)2]√ 𝐄
𝒩(𝑑)

[𝐺(𝑦2, … , 𝑦𝑘)2] ≤ 𝛾 ⋅ 1 ⋅ √1/𝛾 = √𝛾 .

Hence
𝐄

ℐ𝛾(𝑑)
[𝑓(𝑥)𝐺(𝑦2, … , 𝑦𝑘)] ≤ √𝛾 .

This completes the proof.

Combining the above lemmas with Lemma 2.6, we have the following upper-
bounds for correlation on product spaces.

Lemma 4.9. Let
𝛽 = 𝛾 ⋅ (2𝑘−3 − 1)

(2𝑘−2 − 1) ⋅ 2(𝑘−2)𝑑 ⋅ 𝑑 .

For any 𝑆 ⊊ {2, … , 𝑘}, 𝑘0 ∈ {2, … , 𝑘}, we have

𝜌 (∏
𝑙∈𝐿

𝒳𝑙, ∏
𝑙∈𝐿

(∏
𝑖∈𝑆

𝒴𝑙
𝑖) ; ⨂

𝑙∈𝐿
ℋ𝛾(𝑑)) ≤ 𝛾;

𝜌 ⎛⎜
⎝

∏
𝑙∈𝐿

⎛⎜
⎝

𝒳𝑙 × ∏
𝑖≠𝑘0

𝒴𝑙
𝑖⎞⎟
⎠

, ∏
𝑙∈𝐿

𝒴𝑙
𝑘0

; ⨂
𝑙∈𝐿

ℋ𝛾(𝑑)⎞⎟
⎠

≤ 1 − 𝛽2/2;

𝜌 (∏
𝑙∈𝐿

𝒳𝑙, ∏
𝑙∈𝐿

(
𝑘

∏
𝑖=2

𝒴𝑙
𝑖) ; ⨂

𝑙∈𝐿
ℐ𝛾(𝑑)) ≤ √𝛾 .

4.3 Analysis of the Reduction

We now analyze the completeness and soundness of the reduction.
The completeness analysis is standard.

Theorem 4.10. The reduction has completeness 1.
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Proof. Let ℒ be a satisfiable 𝑑-to-1 Label-Cover instance, and 𝜎 be a perfect
labeling. To construct a satisfying assignment for the CSP instance, for each
𝑢 ∈ 𝑈 , we let 𝑓𝑢 be the Long-Code for 𝜎(𝑢), and for each 𝑣 ∈ 𝑉 , let 𝑔𝑣 be
the Long-Code for 𝜎(𝑣). For any edge 𝑒, we have that 𝜋𝑒(𝜎(𝑣)) = 𝜎(𝑢). It follows
from the definition of the test distribution that the tuple

(𝑥𝜎(𝑢), 𝑦2,𝜎(𝑣), … , 𝑦𝑘,𝜎(𝑣))

is in the support of 𝑃 . Thus the functions serve as an assignment that satisfies all
constraints.

The following statement gives the soundness of the construction.

Theorem 4.11. Let ℒ be a 𝑑-to-1 Label-Cover instance, and let Ψ be the Max-
𝑃 instance produced by the above reduction. If there is an assignment to Ψ with
value at least |𝑃 |/2𝑘 +𝜀 then there is a randomized labeling strategy for ℒ achieving
expected value at least 𝜂, for some positive constant 𝜂 depending only on 𝑑 and 𝜀.

Proof. We first arithmetize the probability predicate 𝑃 accepts a random query

Pr
𝑒={𝑢,𝑣}∼𝐸

Pr
𝒯𝑒

[𝑃 (𝑓𝑢(𝑥), 𝑔𝑣(𝑦2), … , 𝑔𝑣(𝑦𝑘))]

= 𝐄
𝑒,𝒯𝑒

⎡⎢
⎣

∑
𝑆∈𝔽𝑘

2

𝑃𝑆𝜒𝑆 (𝑓𝑢(𝑥), 𝑔𝑣(𝑦2), … , 𝑔𝑣(𝑦𝑘))⎤⎥
⎦

.

We have that 𝑃𝟎 = |𝑃 |/2𝑘.
By Lemma 4.3 and the fact that 𝑓𝑢 and 𝑔𝑣 are folded over constant, we conclude

that if 𝑆 ⊊ {2, … , 𝑘} or 𝑆 only contains the coordinate corresponding to 𝑥, then

𝐄
𝑒,𝒯𝑒

[𝜒𝑆(𝑓𝑢(𝑥), 𝑔𝑣(𝑦2), … , 𝑔𝑣(𝑦𝑘))] = 0 .

Also, by Lemma 4.9, the absolute value of terms with 𝑆 containing coordinate 𝑥
but not all of {2, … , 𝑘} is at most 𝛾. Therefore the acceptance probability can be
simplified as

Pr
𝑒={𝑢,𝑣}∼𝐸

Pr
𝒯𝑒

[𝑃 (𝑓𝑢(𝑥), 𝑔𝑣(𝑦2), … , 𝑔𝑣(𝑦𝑘))]

≤ |𝑃 |
2𝑘 + 2𝑘−2 − 1

2𝑘−1 ⋅ 𝛾

+ 𝐄 [𝑃{2,…,𝑘}

𝑘
∏
𝑖=2

𝑔𝑣(𝑦𝑖)] + 𝐄 [𝑃{𝑥}∪{2,…,𝑘}𝑓𝑢(𝑥)
𝑘

∏
𝑖=2

𝑔𝑣(𝑦𝑖)] .

We bound the remaining two expectations in the following theorems.

Theorem 4.12. For any 𝑒 = {𝑢, 𝑣} and function 𝑔𝑣 ∶ {−1, 1}𝑅 → {−1, 1} that is
folded over constant, we have 𝐄𝒯𝑒

[∏𝑘
𝑖=2 𝑔𝑣(𝑦𝑖)] ≤ 𝛾.
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The proof of the above theorem is given in Section 4.4.

Theorem 4.13. There exists constant 𝛿′, 𝛾 > 0 depending only on 𝑑, 𝑘 and 𝛾, such
that the following holds: if for every 𝑙 ∈ 𝐿 and every odd-cardinality set 𝑆 ⊆ 𝜋−1

𝑒 (𝑙),
we have that

min {Inf𝑙(𝑇1−𝛿′/2𝑓𝑢), Inf𝑆(𝑇1−𝛿′/2𝑔𝑣)} ≤ 𝜏 ,
then

∣ 𝐄
𝑒,𝒯𝑒

[𝑓𝑢(𝑥)
𝑘

∏
𝑖=2

𝑔𝑣(𝑦𝑖)]∣ ≤ (𝑘 + 2)√𝛾 .

The proof of the theorem is almost the same as the corresponding one in [90]
and we include it in Section 4.5.

Now we combine Theorem 4.12 and Theorem 4.13 to complete the soundness
analysis. Under the hypothesis of Theorem 4.13, the acceptance probability can be
upper-bounded by

|𝑃 |
2𝑘 + 2𝑘−2 − 1

2𝑘−1 ⋅ 𝛾 + 𝛾 + (𝑘 + 2)√𝛾 ≤ |𝑃 |
2𝑘 + 2𝛾 + (𝑘 + 2)√𝛾 .

Equivalently, suppose some sets of functions {𝑓𝑢}𝑢∈𝑈 and {𝑔𝑣}𝑣∈𝑉 cause the ac-
ceptance probability to exceed |𝑃 |/2𝑘 + 𝜀 = |𝑃 |/2𝑘 + 2𝛾 + 2(𝑘 + 2)√𝛾, then

∣ 𝐄
𝑒,𝒯𝑒

[𝑓𝑢(𝑥)
𝑘

∏
𝑖=2

𝑔𝑣(𝑦𝑖)]∣ > 2(𝑘 + 2)√𝛾 .

By an averaging argument, this implies that for at least a (𝑘 + 2)√𝛾 fraction of the
edges, we have

∣𝐄
𝒯𝑒

[𝑓𝑢(𝑥)
𝑘

∏
𝑖=2

𝑔𝑣(𝑦𝑖)]∣ > (𝑘 + 2)√𝛾 .

We call such edges “good”.
By Theorem 4.13, we know that for each good edge 𝑒 = {𝑢, 𝑣}, there exists

𝑙𝑒 ∈ 𝐿 and an odd cardinality set 𝑆𝑒 ⊆ 𝜋−1
𝑒 (𝑙𝑒), such that

min {Inf𝑙(𝑇1−𝛿′/2𝑓𝑢), Inf𝑆(𝑇1−𝛿′/2𝑔𝑣)} ≥ 𝜏 .

For each 𝑢 ∈ 𝑈 , define 𝐿𝑢 ∶= {𝑙 ∈ 𝐿 ∣ Inf𝑖(𝑇1−𝛿′/2𝑓𝑢) > 𝜏}, and for each 𝑣 ∈ 𝑉 ,
define 𝐿𝑣 ∶= {𝑟 ∈ 𝑅 ∣ ∃𝑆, |𝑆| ≤ 𝑑, |𝑆| is odd, s.t. Inf𝑆(𝑇1−𝛿′/2𝑔𝑣) > 𝜏, 𝑟 ∈ 𝑆}. By
Proposition 2.31, we have that |𝐿𝑢| ≤ 1/𝛿′𝜏 .

As for |𝐿𝑣|, note that ∑|𝑆|≤𝑑 Inf𝑆(𝑇1−𝛿′/2𝑔𝑣) ≤ (𝑑/𝛿′)𝑑, therefore at most
(𝑑/𝛿′)𝑑/𝜏 sets 𝑆 can contribute in the definition of 𝐿𝑣, and each 𝑆 contribute at
most 𝑑 elements to 𝐿𝑣, thus |𝐿𝑣| ≤ 𝑑 ⋅ (𝑑/𝛿′)𝑑/𝜏 .

For a good edge 𝑒, we have that 𝑙𝑒 ∈ 𝐿𝑢 and 𝑆𝑒 contributes to 𝐿𝑣. Since 𝑆𝑒
is odd, it is nonempty, and therefore there exists 𝑟𝑒 ∈ 𝑆 ⊆ 𝜋−1

𝑒 (𝑙𝑒). If we pick
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randomly a label from 𝐿𝑢 and a label from 𝐿𝑣, then the probability that we pick
a pair of matching labels is at least 1/(|𝐿𝑢||𝐿𝑣|) ≥ 𝜏2(𝛿′/𝑑)𝑑+1. Recall that at
least (𝑘 + 2)√𝛾 fraction of the edges are good, thus the expected fraction of edges
satisfied by this randomized labeling is at least (𝑘 + 2)√𝛾𝜏2(𝛿′/𝑑)𝑑+1, a positive
constant depending only on 𝑑, 𝑘 and 𝜀, as desired. This completes the analysis of
the soundness of the reduction.

4.4 Analyzing 𝐄[∏𝑘
𝑖=2 𝑔𝑣(𝑦𝑖)]

In this section, we prove Theorem 4.12. We follow essentially the same approach
as in [90]. The main difference is that the approach in [90] is defined for product of
two functions, whereas in our case we have 𝑘 − 1 of them. To apply their approach,
we study the conditional distribution where 𝑦2, … , 𝑦𝑘−2 is given. Note that 𝑥 is
not being conditioned on. Let ℋ(𝑑, {𝑧𝑖}𝑘−2

𝑖=2 ) be the distribution ℋ(𝑑) conditioned
on 𝑦𝑖 = 𝑧𝑖 for 𝑖 = 2, … , 𝑘 − 2. Similarly, we define 𝒩(𝑑, {𝑧𝑖}), 𝒩𝑠(𝑑, {𝑧𝑖}) and
ℋ𝛾(𝑑, {𝑧𝑖}).

Let ({−1, 1}𝑑 × {−1, 1}𝑑 , 𝜇) be correlated probability spaces, and let 𝑀(𝜇) be
the 2𝑑 × 2𝑑 matrix associated with 𝜇, defined as

𝑀(𝜇)𝑆,𝑇 = 𝐄
(𝑥,𝑦)∼𝜇

[𝜒𝑆(𝑥)𝜒𝑇 (𝑦)] .

For a function 𝑔 ∶ {−1, 1}𝑑 → ℝ, we can identify it with a column vector of
dimension 2𝑑, with entries indexed by 𝑆 ⊆ [𝑑] in the same order as in the matrix
notation for 𝑀(𝜇). The 𝑆-th entry of 𝑔 is ̂𝑔𝑆. Then we have

𝐄
𝜇

[𝑔(𝑥)𝑔(𝑦)] = 𝑔𝑇 𝑀(𝜇)𝑔 .

Thus, to bound 𝐄ℋ𝛾(𝑑)[∏𝑘
𝑖=2 𝑔(𝑦𝑖)], all we need is to upper-bound the absolute

value of

𝑔𝑇 (⨂
𝑙∈𝐿

𝑀(ℋ𝛾(𝑑, {𝑦𝑖}𝑘−2
𝑖=2 )) 𝑔 .

For notational simplicity, we use ⃗𝑦 to denote {𝑦𝑖}𝑘−2
𝑖=2 .

The following statement is straightforward to verify.

Proposition 4.14. For any {𝑦𝑖}𝑘
𝑖=2, the entry 𝑀(ℋ(𝑑, ⃗𝑦))𝑆,𝑇 is nonzero iff 𝑆 = 𝑇

and that |𝑆| = |𝑇 | are even, in which case the entry is ±1.

Define the distribution ℰ(𝑑) on 𝒳×∏𝑘
𝑖=2 𝒴𝑖 which generates pairs (𝑦𝑘−1, 𝑦𝑘) by

choosing 𝑦𝑘−1 uniformly at random and setting 𝑦𝑘 = 𝑦𝑘−1 regardless of the values
of 𝑥 and other 𝑦𝑖. It is easy to see that 𝑀(ℰ(𝑑, ⃗𝑦)) is the identity matrix. Further,
denote by ℰ𝛾(𝑑) = (1 − 𝛾)ℋ(𝑑) + 𝛾ℰ(𝑑).
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The remaining of the proof is divided into two steps. First, we show that
the absolute value of the expectation under ℋ𝛾(𝑑, ⃗𝑦) is upper-bounded by the
expectation under ℰ𝛾(𝑑, ⃗𝑦). We then derive an upper-bound for the latter.

For the first step, we use the following lemma in matrix algebra.

Lemma 4.15 ([90]). Let 𝐴𝑖 and 𝐵𝑖 be 𝑚 × 𝑚 matrices, 𝑖 = 1, … , 𝑛, and suppose
that 𝐴𝑖 −𝐵𝑖 and 𝐴𝑖 +𝐵𝑖 are both positive semidefinite. Then ⨂𝑛

𝑖=1 𝐴𝑖 −⨂𝑛
𝑖=1 𝐵𝑖

and ⨂𝑛
𝑖=1 𝐴𝑖 + ⨂𝑛

𝑖=1 𝐵𝑖 are both positive semidefinite.

We have the following for the matrices associated with ℋ𝛾(𝑑, ⃗𝑦) and ℰ𝛾(𝑑, ⃗𝑦).
Lemma 4.16. For any fixed value of ⃗𝑦, the matrices

⨂
𝑙∈𝐿

𝑀 (ℰ𝛾(𝑑, ⃗𝑦)) ± ⨂
𝑙∈𝐿

𝑀 (ℋ𝛾(𝑑, ⃗𝑦))

are positive semidefinite.

Proof. By Lemma 4.15, it suffices to show that the matrices

𝑀 (ℰ𝛾(𝑑, ⃗𝑦)) ± 𝑀 (ℋ𝛾(𝑑, ⃗𝑦))

are positive semidefinite. For notational simplicity, we omit the dependence on 𝑑
and ⃗𝑦 in the rest of the proof.

For the conditional distributions, we still have ℋ𝛾 = (1 − 𝛾)ℋ + 𝛾𝒩 and
ℰ𝛾 = (1−𝛾)ℋ+𝛾ℰ. Therefore 𝑀(ℰ𝛾)−𝑀(ℋ𝛾) = 𝛾(𝑀(ℰ)−𝑀(𝒩)). To show that
𝑀(ℰ𝛾) − 𝑀(ℋ𝛾) is positive semidefinite, it suffices to show it for 𝑀(ℰ) − 𝑀(𝒩).
For any ℎ ∶ {−1, 1}𝑑 → ℝ, using Cauchy-Schwarz, we have

ℎ𝑇 𝑀(𝒩)ℎ = 𝐄
𝑦𝑘−1,𝑦𝑘∼𝒩

[ℎ(𝑦𝑘−1)ℎ(𝑦𝑘)]

≤ √ 𝐄
𝑦𝑘−1,𝑦𝑘∼𝒩

[ℎ(𝑦𝑘−1)2]√ 𝐄
𝑦𝑘−1,𝑦𝑘∼𝒩

[ℎ(𝑦𝑘)2] .

The conditional marginals under 𝒩 of 𝑦𝑘−1 and 𝑦𝑘 are uniform by Lemma 4.3.
By the way we define ℰ, the same conditional marginals are also uniform under ℰ.
Therefore we can continue the calculation above and get

√ 𝐄
𝑦𝑘−1,𝑦𝑘∼𝒩

[ℎ(𝑦𝑘−1)2]√ 𝐄
𝑦𝑘−1,𝑦𝑘∼𝒩

[ℎ(𝑦𝑘)2]

= 𝐄[ℎ2] = 𝐄
𝑦𝑘−1,𝑦𝑘∼ℰ

[ℎ(𝑦𝑘−1)ℎ(𝑦𝑘)] = ℎ𝑇 𝑀(ℰ)ℎ,

therefore ℎ𝑇 𝑀(𝒩)ℎ ≤ ℎ𝑇 𝑀(ℰ)ℎ for all ℎ, and hence 𝑀(ℰ) − 𝑀(𝒩) is positive
semidefinite.

As for 𝑀(ℰ𝛾) + 𝑀(ℋ𝛾), it equals 2(1 − 𝛾)𝑀(ℋ𝛾) + 𝛾(𝑀(ℰ) + 𝑀(𝒩)). The
matrix 𝑀(ℋ) is diagonal with only nonnegative numbers on the diagonal and
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therefore is positive semidefinite. As for 𝑀(ℰ) + 𝑀(𝒩), the proof is essentially the
same as 𝑀(ℰ)−𝑀(𝒩): we start with ℎ𝑇 (−𝑀(𝒩))ℎ and the minus sign disappears
with the application of Cauchy-Schwarz.

We use the following lemma to bound the expectation under ℰ𝛾.

Lemma 4.17. Let 𝑔 ∶ {−1, 1}𝑅 → {−1, 1} be a function folded over constant.
Then for any ⃗𝑦, we have

∣𝑔𝑇 (⨂
𝑙∈𝐿

𝑀(ℰ𝛾(𝑑, ⃗𝑦))) 𝑔∣ ≤ 𝛾 .

Proof. Recall that 𝑀(ℋ(𝑑, ⃗𝑦)) is a diagonal matrix with (𝑆, 𝑆) equals 0 if |𝑆| is odd
and ±1 if |𝑆| is even, and 𝑀(ℰ(𝑑, ⃗𝑦)) is the identity matrix. Therefore 𝑀(ℰ𝛾(𝑑, ⃗𝑦))
is a diagonal matrix whose (𝑆, 𝑆) entry has absolute value at most 1 if |𝑆| is even
and 𝛾 if |𝑆| is odd. It follows that

∣𝑔𝑇 (⨂
𝑙∈𝐿

𝑀(ℰ𝛾(𝑑, ⃗𝑦))) 𝑔∣ ≤ ∑
𝑆⊆𝑅

̂𝑔2
𝑆 ⋅ 𝛾#{𝑙∈𝐿∣|𝑆∩𝜋−1(𝑙)| is odd.} .

Since 𝑔 is folded over constant, ̂𝑔2
𝑆 is nonzero only if |𝑆| is odd. Note that if |𝑆|

is odd, then for at least one 𝑙, we have that |𝑆 ∩ 𝜋−1(𝑙)| is odd, therefore we can
bound the above by

∑
𝑆⊆[𝑅]

̂𝑔2
𝑆 ⋅ 𝛾 ≤ 𝐄[𝑔2] ⋅ 𝛾 = 𝛾 .

We can now conclude that for any fixed ⃗𝑦, the expectation of 𝑔(𝑦𝑘−1)𝑔(𝑦𝑘) is
small.

Theorem 4.18. For any 𝑒 = {𝑢, 𝑣}, 𝑔𝑣 ∶ {−1, 1}𝑅 → {−1, 1} that is folded over
constant, and any ⃗𝑦 = {𝑦𝑖}𝑘−2

𝑖=2 , we have

∣ 𝐄
(𝑦𝑘−1,𝑦𝑘)∼𝒯𝑒(𝐲)

[𝑔(𝑦𝑘−1)𝑔(𝑦𝑘)]∣ ≤ 𝛾 .

Proof. Using the matrix notation, we have

𝐄
𝒯𝑒(�⃗�)

[𝑔(𝑦𝑘−1)𝑔(𝑦𝑘)] = 𝑔𝑇 𝑀(𝒯𝑒( ⃗𝑦))𝑔

= 𝑔𝑇 (⨂
𝑙∈𝐿

𝑀(ℋ𝛾(𝑑, ⃗𝑦))) 𝑔 .
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We bound the above with Lemma 4.16.

𝑔𝑇 (⨂
𝑙∈𝐿

𝑀(ℰ𝛾(𝑑, ⃗𝑦)) − ⨂
𝑙∈𝐿

𝑀(ℋ𝛾(𝑑, ⃗𝑦))) 𝑔 ≥ 0,

𝑔𝑇 (⨂
𝑙∈𝐿

𝑀(ℰ𝛾(𝑑, ⃗𝑦)) + ⨂
𝑙∈𝐿

𝑀(ℋ𝛾(𝑑, ⃗𝑦))) 𝑔 ≥ 0 .

This implies that

− 𝑔𝑇 (⨂
𝑙∈𝐿

𝑀(ℰ𝛾(𝑑, ⃗𝑦))) 𝑔

≤ 𝑔𝑇 (⨂
𝑙∈𝐿

𝑀(ℋ𝛾(𝑑, ⃗𝑦))) 𝑔 ≤ 𝑔𝑇 (⨂
𝑙∈𝐿

𝑀(ℰ𝛾(𝑑, ⃗𝑦))) .

Finally by Lemma 4.17

∣ 𝐄
(𝑦𝑘−1,𝑦𝑘)∼𝒯𝑒(𝐲)

[𝑔(𝑦𝑘−1)𝑔(𝑦𝑘)]∣ ≤ 𝛾 .

4.5 Analyzing 𝐄[𝑓(𝑥) ∏𝑘
𝑖=2 𝑔𝑣(𝑦𝑖)]

We now prove Theorem 4.13. The analysis is almost an exact copy of O’Donnell
and Wu’s approach. We include the full analysis here to demonstrate an Invariance-
Principle style soundness analysis.

We first explains the main steps, followed by the proofs of the key theorem of
each step.

Let ℋ𝛾 ∶= ⨂𝑙∈𝐿 ℋ𝛾(𝑑), and ℐ𝛾 ∶= ⨂𝑙∈𝐿 ℐ𝛾(𝑑). The goal is to first show that

𝐄
ℋ𝛾

[𝑓𝑢

𝑘
∏
𝑖=2

𝑔𝑣(𝑦𝑖)] ≈ 𝐄
ℐ𝛾

[𝑓𝑢

𝑘
∏
𝑖=2

𝑔𝑣(𝑦𝑖)] ,

and then bound the right hand side.
We omit subscripts 𝑢 and 𝑣 in the rest of the proof.
We first apply the Bonami-Beckner operator to the functions. We call this the

noise introduction step.

Theorem 4.19. There are positive constants 𝛿 ≥ 𝛿′ > 0 depending only on 𝛾 and
𝑑 such that

∣ 𝐄
ℋ𝛾

[𝑓(𝑥)
𝑘

∏
𝑖=2

𝑔(𝑦𝑖)] − 𝐄
ℋ𝛾

[𝑇1−𝛿′𝑓(𝑥)
𝑘

∏
𝑖=2

𝑇1−𝛿𝑔(𝑦𝑖)]∣ ≤ 𝑘√𝛾 .
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Next, we move from distribution ℋ𝛾 to ℐ𝛾 by an Invariance-Principle type
argument.

Theorem 4.20. There exists constants 𝜏 > 0 depending only on 𝑑, 𝛾 and 𝛿′, such
that the following holds: if for every 𝑙 ∈ 𝐿 and every odd cardinality-set 𝑆 ⊆ 𝜋−1

𝑒 (𝑙),
we have

min {Inf𝑙(𝑇1−𝛿′𝑓, Inf𝑆(𝑇1−𝛿′𝑔)} ≤ 𝜏 ,
then we have

∣ 𝐄
ℋ𝛾

[𝑇1−𝛿′𝑓(𝑥)
𝑘

∏
𝑖=2

𝑇1−𝛿𝑔(𝑦𝑖)] − 𝐄
ℐ𝛾

[𝑇1−𝛿′𝑓(𝑥)
𝑘

∏
𝑖=2

𝑇1−𝛿𝑔(𝑦𝑖)]∣ ≤ √𝛾 .

Finally, we have the following theorem bounding the expectation under ℐ𝛾.

Theorem 4.21.

∣𝐄
ℐ𝛾

[𝑇1−𝛿′

𝑘
∏
𝑖=2

𝑇1−𝛿′𝑔(𝑦𝑖)]∣ ≤ √𝛾 .

We give the proofs of Theorem 4.19 and Theorem 4.20 below. Theorem 4.21
follows directly from Lemma 4.9.

Let us now start with the proof of Theorem 4.19. The idea is to apply the
Bonami-Beckner operator to the functions one by one. Intuitively, the Bonami-
Beckner operator does not change the low-degree parts of the functions by too
much. For the high-degree parts, it follows from Proposition 2.36 that their overall
contributions are small regardless of whether 𝑇1−𝛿′ is applied or not.

We first introduce noise to the 𝑔 functions.

Lemma 4.22. There exists a small 𝛿 > 0 as a function of 𝑑 and 𝛾, such that for
any 𝑗 ∈ {2, … , 𝑘}

∣ 𝐄
ℋ𝛾

[𝑓(𝑥)
𝑗

∏
𝑖=2

𝑔(𝑦𝑖) ⋅
𝑘

∏
𝑖=𝑗+1

𝑇1−𝛿𝑔(𝑦𝑖)] − 𝐄
ℋ𝛾

[𝑓(𝑥)
𝑗−1
∏
𝑖=2

𝑔(𝑦𝑖) ⋅
𝑘

∏
𝑖=𝑗

𝑇1−𝛿𝑔(𝑦𝑖)]∣ ≤ √𝛾 .

Proof. We specify the parameter 𝛿 at the end of the proof.
Let 𝒰 be the conditional expectation operator for the correlated probability

space

(({−1, 1}𝐿 ×
𝑘−1
∏
𝑖=2

{−1, 1}𝑅) × {−1, 1}𝑅 , ℋ𝛾) ,

mapping function ℎ on the latter space to the former space by

(𝒰ℎ)(𝑥, {𝑦𝑖}𝑖∈{2,…,𝑘}−{𝑗}) = 𝐄
ℋ𝛾

[ℎ(𝑦𝑗) ∣ (𝑥, {𝑦𝑖}𝑖∈{2,…,𝑘}−{𝑗})] .
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We have

∣ 𝐄
ℋ𝛾

[𝑓(𝑥)
𝑗

∏
𝑖=2

𝑔(𝑦𝑖) ⋅
𝑘

∏
𝑖=𝑗+1

𝑇1−𝛿𝑔(𝑦𝑖)] − 𝐄
ℋ𝛾

[𝑓(𝑥)
𝑗−1
∏
𝑖=2

𝑔(𝑦𝑖) ⋅
𝑘

∏
𝑖=𝑗

𝑇1−𝛿𝑔(𝑦𝑖)]∣

= ∣ 𝐄
ℋ𝛾

[𝑓(𝑥)
𝑗−1
∏
𝑖=2

𝑔(𝑦𝑖) ⋅
𝑘

∏
𝑖=𝑗+1

𝑇1−𝛿𝑔(𝑦𝑖) ⋅ (id − 𝑇1−𝛿)𝑔(𝑦𝑗)]∣

= ∣ 𝐄
(𝑥,{𝑦𝑖}𝑖∈{2,…,𝑘}−{𝑗})∼ℋ𝛾

[𝑓(𝑥)
𝑗−1
∏
𝑖=2

𝑔(𝑦𝑖) ⋅
𝑘

∏
𝑖=𝑗+1

𝑇1−𝛿𝑔(𝑦𝑖)

(𝒰(id − 𝑇1−𝛿)𝑔(𝑦𝑗))(𝑥, {𝑦𝑖}𝑖∈{2,…,𝑘}−{𝑗})]∣ . (4.2)

Consider the function inside the expectation as two functions, 𝐺 = 𝒰(id − 𝑇1−𝛿)𝑔,
and everything else 𝐹 = 𝑓 ⋅ (∏𝑗−1

𝑖=2 𝑔) ⋅ (∏𝑘
𝑖=𝑗+1 𝑇1−𝛿𝑔). Take the Efron-Stein de-

composition of 𝐹 and 𝐺 with respect to ℋ𝛾. By orthogonality of the Efron-Stein
decomposition, we have

(4.2) = ∣ ∑
𝑆⊆𝐿

𝐄
(𝑥,{𝑦𝑖}𝑖∈{2,…,𝑘}−{𝑗})∼ℋ𝛾

[𝐹𝑆 ⋅ 𝐺𝑆]∣

≤ √ ∑
𝑆⊆𝐿

‖𝐹𝑆‖2
2√ ∑

𝑆⊆𝐿
‖𝐺𝑆‖2

2 ≤ √ ∑
𝑆⊆𝐿

‖𝐺𝑆‖2
2 , (4.3)

where on the first line the inputs to 𝐹𝑆 and 𝐺𝑆 are (𝑥, {𝑦𝑖}𝑖∈{2,…,𝑘}−{𝑗}), the ‖ ⋅ ‖2
are with respect to the marginals of ℋ𝛾 on 𝒳×∏𝑖∈{2,…,𝑘}−{𝑗} 𝒴𝑖. The conditional
expectation operator 𝑈 commutes with taking Efron-Stein decomposition, so we
have 𝐺𝑆 = 𝒰𝐺′

𝑆, where 𝐺′ = (id − 𝑇1−𝛿)𝑔. Note that the Efron-Stein decomposi-
tion for 𝐺′ is with respect to the marginal distribution of ℋ𝛾 on 𝒴𝑗, namely the
uniform distribution. Applying the Bonami-Beckner operator also commutes with
taking Efron-Stein decomposition, hence we have 𝐺𝑆 = 𝒰𝐺′

𝑆 = 𝒰(id − 𝑇1−𝛿)𝑔𝑆.
Substituting this into (4.3) yields

(4.3) = √ ∑
𝑆⊆𝐿

‖𝒰(𝑖𝑑 − 𝑇1−𝛿)𝑔𝑆‖2
2 .

Recall that the Efron-Stein decomposition for 𝑔 satisfies

𝑔𝑆 = ∑
𝑈⊆𝑅∶𝜋(𝑈)=𝑆

̂𝑔𝑈𝜒𝑈 ,

where 𝜋 is the projection on the edge. Let 𝜌0 be the bound in Lemma 4.9. Applying
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Proposition 2.36, we get

(4.3) ≤ √ ∑
𝑆⊆𝐿

𝜌|𝑆|
0 ‖(id − 𝑇1−𝛿)𝑔𝑆‖2

2 ,

‖(id − 𝑇1−𝛿)𝑔𝑆‖2
2 = ∑

𝑈⊆𝑅∶𝜋(𝑈)=𝑆
(1 − (1 − 𝛿)2|𝑈| | ̂𝑔𝑈|2)

≤ ∑
𝑈⊆𝑅∶𝜋(𝑈)=𝑆

(1 − (1 − 𝛿)2𝑑|𝑆| | ̂𝑔𝑈|2)

= (1 − (1 − 𝛿)2𝑑|𝑆|)‖𝑔𝑆‖2
2 ,

therefore
(4.3) ≤ √ ∑

𝑆⊆𝐿
𝜌|𝑆|

0 (1 − (1 − 𝛿)2𝑑|𝑆|)‖𝑔𝑆‖2
2 .

We bound the coefficients by

𝜌|𝑆|
0 (1 − (1 − 𝛿)2𝑑|𝑆|) ≤ exp(−|𝑆|𝛽2) ⋅ (2𝑑|𝑆|𝛿) .

We can now choose 𝛿 > 0 small enough so that the above is upper-bounded by 𝛾,
and thus (4.2) ≤ √𝛾.

Applying Lemma 4.22 to the 𝑔 functions one by one, and we have the following

∣ 𝐄
ℋ𝛾

[𝑓(𝑥)
𝑘

∏
𝑖=2

𝑔(𝑦𝑖)] − 𝐄
ℋ𝛾

[𝑓(𝑥)
𝑘

∏
𝑖=2

𝑇1−𝛿𝑔(𝑦𝑖)]∣ ≤ (𝑘 − 1)√𝛾 .

It remains to apply the Bonami-Beckner operator to 𝑓 .

Lemma 4.23. There exists a constant 𝛿′ > 0 depending on 𝛿, 𝑑, 𝛾, such that

∣ 𝐄
ℋ𝛾

[𝑓(𝑥)
𝑘

∏
𝑖=2

𝑔(𝑦𝑖)] − 𝐄
ℋ𝛾

[𝑇1−𝛿′𝑓(𝑥)
𝑘

∏
𝑖=2

𝑇1−𝛿𝑔(𝑦𝑖)]∣ ≤ √𝛾 .

The proof is almost identical to Lemma 4.22. The only difference is that we
need a noisy version of ℋ𝛾, denoted as ℋ∗

𝛾, where we first generate according to
ℋ𝛾, then rerandomize each bit in 𝑦𝑖 with probability 𝛿. Define ℋ𝛾(𝑑) similarly.
We have the following correlation bound similar to Lemma 4.9.

Lemma 4.24. 𝜌({−1, 1} , ∏𝑘
𝑖=2 {−1, 1}𝑑 ; ℋ∗

𝛾(𝑑)) ≤ 1−𝛽2/2, where 𝛽 = 𝛾⋅(2𝑘−3−
1) ⋅ 𝛿(𝑘−1)𝑑/(2(2𝑘−3)𝑑 ⋅ 𝑑 ⋅ (2𝑘−2 − 1)) is a lower-bound of the least probability of an
atom in ℋ∗

𝛾(𝑑).
This completes the proof of Theorem 4.19.
Next we prove Theorem 4.20. Recall that ℋ𝛾 = ⨂ ℋ𝛾(𝑑) and ℐ𝛾 = ⨂ ℐ𝛾(𝑑).

The overall plan is to change the distribution one by one from ℋ𝛾(𝑑) to ℐ𝛾(𝑑). We
prove the following theorem.
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Theorem 4.25. For each 𝑙 ∈ 𝐿

∣ 𝐄
⨂𝑙−1

𝑖=1 ℐ𝛾(𝑑)⊗⨂𝐿
𝑖=𝑙 ℋ𝛾(𝑑)

[𝑇1−𝛿′𝑓(𝑥)
𝑘

∏
𝑖=2

𝑇1−𝛿𝑔(𝑦𝑖)]

− 𝐄
⨂𝑙

𝑖=1 ℐ𝛾(𝑑)⊗⨂𝐿
𝑖=𝑙+1 ℋ𝛾(𝑑)

[𝑇1−𝛿′𝑓(𝑥)
𝑘

∏
𝑖=2

𝑇1−𝛿𝑔(𝑦𝑖)] ∣ ≤ Δ𝑙 , (4.4)

where

Δ𝑙 ∶= 𝜏𝛿′/(2𝑘) ⎛⎜
⎝

2𝑑 Inf𝑙(𝑇1−𝛿′/2𝑓) + ∑
𝑆⊆𝜋−1(𝑙),|𝑆| is odd

Inf𝑆(𝑇1−𝛿′/2𝑔)⎞⎟
⎠

.

We first prove Theorem 4.20 using Theorem 4.25.

Proof of Theorem 4.20. Summing over all 𝑙 ∈ 𝐿, by triangle inequality and Propo-
sition 2.31, we have

∣ 𝐄
ℋ𝛾

[𝑇1−𝛿′𝑓(𝑥)
𝑘

∏
𝑖=2

𝑇1−𝛿𝑔(𝑦𝑖)] − 𝐄
ℐ𝛾

[𝑇1−𝛿′𝑓(𝑥)
𝑘

∏
𝑖=2

𝑇1−𝛿𝑔(𝑦𝑖)]∣

≤ 𝜏𝛿′/(2𝑘) ⎛⎜
⎝

2𝑑 ∑
𝑙∈𝐿

Inf𝑙(𝑇1−𝛿′/2𝑓) + ∑
𝑆⊆𝜋−1(𝑙′) for some 𝑙′∈𝐿

Inf𝑆(𝑇1−𝛿′/2𝑔)⎞⎟
⎠

≤ 𝜏𝛿′/(2𝑘) (2𝑑(1/𝛿′) + (𝑑/𝛿′)𝑑)
≤ 2𝜏𝛿′/(2𝑘)(𝑑/𝛿′)𝑑 .

Choose 𝜏 small enough so that the last line is bounded by √𝛾, and this completes
the proof.

Now we prove Theorem 4.25.

Proof of Theorem 4.25. We show the theorem for the case 𝑙 = 1. The other cases
are similar.

Given 𝑥 and 𝑦𝑖, we write 𝑥′ = (𝑥2, … , 𝑥𝐿), and 𝑦′
𝑖 = (𝑦𝑖,𝑑+1, … , 𝑦𝑖,𝑅). We

break up the Fourier expansion of 𝑓 according to its dependence on 𝑥1:

𝑓(𝑥) = 𝐹∅(𝑥′) + 𝑥1𝐹1(𝑥′) .
Similarly, we break up the Fourier expansion of 𝑔 according to its dependence on
𝑦1, … , 𝑦𝑑:

𝑔(𝑦) = ∑
𝑆⊆[𝑑]

𝜒𝑆(𝑦1, … , 𝑦𝑑)𝐺𝑆(𝑦′) ,

where for any 𝑆 ⊆ [𝑑], we denote

𝐺𝑆(𝑦′) = ∑
𝑄⊆𝑅,𝑄∩[𝑑]=𝑆

̂𝑔𝑄𝜒𝑄−𝑆(𝑦′) .
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Since ̂𝑔𝑄 = 𝐄𝑦 [𝑔(𝑦)𝜒𝑄(𝑦)], we have

𝐺𝑆(𝑦′) = 𝐄
𝑦1,𝑦2,…,𝑦𝑑

[𝑔(𝑦1, … , 𝑦𝑑, 𝑦′)𝜒𝑆(𝑦1, … , 𝑦𝑑)] ,

therefore 𝐺𝑆 is bounded in [−1, 1]. Similarly, so are 𝐹∅ and 𝐹1. Also, for the
Fourier expansion of the noisy functions, we have

𝑇1−𝛿′𝑓(𝑥) = 𝑇1−𝛿′𝐹∅(𝑥′) + (1 − 𝛿′)𝑥1𝑇1−𝛿′𝐹1(𝑥′),
𝑇1−𝛿𝑔(𝑦) = ∑

𝑆⊆[𝑑]
(1 − 𝛿)|𝑆|𝜒𝑆(𝑦1, … , 𝑦𝑑)𝑇1−𝛿𝐺𝑆(𝑦′) .

Lemma 4.26. For any functions 𝐹 ∶ {−1, 1} → ℝ and 𝐺𝑖 ∶ {−1, 1}𝑑 → ℝ, we have

𝐄
ℋ𝛾(𝑑)

[𝐹(𝑥)
𝑘

∏
𝑖=2

𝐺𝑖(𝑦𝑖)] − 𝐄
ℐ𝛾(𝑑)

[𝐹(𝑥)
𝑘

∏
𝑖=2

𝐺𝑖(𝑦𝑖)]

= ∑
𝑆⊆[𝑑],|𝑆| is odd

(1 − 𝛾)𝐹{1}

𝑘
∏
𝑖=2

𝐺𝑖,𝑆 .

Proof. Taking Fourier expansion for the left hand side, we have

𝐿𝐻𝑆

= ∑
𝑈⊆[1]
𝑉𝑖⊆[𝑑]

𝐹𝑈

𝑘
∏
𝑖=2

𝐺𝑉𝑖
( 𝐄

ℋ𝛾(𝑑)
[𝜒𝑈(𝑥)

𝑘
∏
𝑖=2

𝜒𝑉𝑖
(𝑦𝑖)] − 𝐄

ℐ𝛾(𝑑)
[𝜒𝑈(𝑥)

𝑘
∏
𝑖=2

𝜒𝑉𝑖
(𝑦𝑖)]) .

Since ℋ𝛾(𝑑) = (1−𝛾)ℋ(𝑑)+𝛾𝒩(𝑑), and ℐ𝛾(𝑑) = (1−𝛾)ℐ(𝑑)+𝛾𝒩(𝑑), by linearity
of expectation, we have

𝐄
ℋ𝛾(𝑑)

[𝜒𝑈(𝑥)
𝑘

∏
𝑖=2

𝜒𝑉𝑖
(𝑦𝑖)] − 𝐄

ℐ𝛾(𝑑)
[𝜒𝑈(𝑥)

𝑘
∏
𝑖=2

𝜒𝑉𝑖
(𝑦𝑖)]

= (1 − 𝛾) ( 𝐄
ℋ(𝑑)

[𝜒𝑈(𝑥)
𝑘

∏
𝑖=2

𝜒𝑉𝑖
(𝑦𝑖)] − 𝐄

ℐ(𝑑)
[𝜒𝑈(𝑥)

𝑘
∏
𝑖=2

𝜒𝑉𝑖
(𝑦𝑖)]) . (4.5)

Note that ℋ(𝑑) and ℐ(𝑑) have the same marginal distribution on ∏𝑘
𝑖=2 {−1, 1}𝑑,

therefore for (4.5) to be nonzero, it must be that 𝑈 = {1}.
For the expectation under ℐ(𝑑), we have

𝐄
ℐ(𝑑)

[𝜒𝑈(𝑥)
𝑘

∏
𝑖=2

𝜒𝑉𝑖
(𝑦𝑖)] = 𝐄

ℐ(𝑑)
[𝜒𝑈(𝑥)] 𝐄

ℐ(𝑑)
[

𝑘
∏
𝑖=2

𝜒𝑉𝑖
(𝑦𝑖)] = 0 .

For ℋ(𝑑), it is easy to see that the expectation is zero unless for all 𝑖 ∈ {2, … , 𝑘},
𝑉𝑖 = 𝑉 for some common 𝑉 . Moreover, |𝑉 | must be odd, and in this case, the
expectation is 1. Thus we get the RHS of the statement.



4.5. ANALYZING 𝐄[𝑓(𝑥) ∏𝑘
𝑖=2 𝑔𝑣(𝑦𝑖)] 69

We denote ℋ′
𝛾 = ⨂𝑙≠1 ℋ𝛾(𝑑). We now rewrite the LHS of (4.4) as

∣ 𝐄
ℋ′𝛾

[ 𝐄
ℋ𝛾(𝑑)

[𝑇1−𝛿′𝑓(𝑥)
𝑘

∏
𝑖=2

𝑇1−𝛿𝑔(𝑦𝑖)] − 𝐄
ℐ𝛾(𝑑)

[𝑇1−𝛿′𝑓(𝑥)
𝑘

∏
𝑖=2

𝑇1−𝛿𝑔(𝑦𝑖)]]∣ .

By Lemma 4.26, the above is equal to

∣ ∑
𝑆⊆[𝑑],|𝑆| is odd

(1 − 𝛾)(1 − 𝛿′)(1 − 𝛿)(𝑘−1)|𝑆| 𝐄
ℋ′𝛾

[𝑇1−𝛿′𝐹1(𝑥′)
𝑘

∏
𝑖=2

𝑇1−𝛿𝐺𝑆(𝑦′
𝑖)]∣

≤ ∑
𝑆⊆[𝑑],|𝑆| is odd

(1 − 𝛾)(1 − 𝛿′)(1 − 𝛿)(𝑘−1)|𝑆| 𝐄
ℋ′𝛾

[∣𝑇1−𝛿′𝐹1(𝑥′)
𝑘

∏
𝑖=2

𝑇1−𝛿𝐺𝑆(𝑦′
𝑖)∣]

≤ ∑
𝑆⊆[𝑑],|𝑆| is odd

(1 − 𝛿′)(1 − 𝛿)(𝑘−1)|𝑆|‖𝑇1−𝛿′𝐹1‖𝑘‖𝑇1−𝛿𝐺𝑆‖𝑘−1
𝑘 ,

where the last step uses the generalized Hölder’s Inequality (Theorem 2.4), and
the norms ‖ ⋅ ‖𝑘 are with respect to the corresponding marginals of ℋ′

𝛾, which are
uniform.

The following follows easily from the Hypercontractivity Theorem (Theorem
2.30).

Lemma 4.27. For any function 𝑓 ∶ {−1, 1}𝑛 → [−1, 1] and 0 < 𝜂 < 1

‖𝑇1−𝜂𝑓‖𝑘 ≤ ‖𝑇1−𝜂/2𝑓‖(2+𝜂)/𝑘
2 .

Proof. Let 𝜂′ = 𝜂/2 and 𝑓′ = 𝑇1−𝜂/2𝑓 . Observe that

‖𝑇1−𝜂′𝑓′‖𝑘 = 𝐄 [|𝑇1−𝜂′𝑓′|𝑘]1/𝑘

≤ 𝐄 [|𝑇1−𝜂′𝑓′|2+2𝜂′]1/𝑘 = ‖𝑇1−𝜂′𝑓′‖(2+2𝜂′)/𝑘
2+2𝜂′ .

Since 2 + 2𝜂′ ≤ (1 − 𝜂′)2 + 1, by Theorem 2.30, the above is upper-bounded by
‖𝑓′‖(2+2𝜂′)/𝑘

2 . Finally, note that

‖𝑇1−𝜂𝑓‖𝑘 ≤ ‖𝑇1−𝜂′𝑇1−𝜂′𝑓‖𝑘 ≤ ‖𝑇1−𝜂/2𝑓‖(2+𝜂)/𝑘
2 .

Since 𝐹1 and 𝐺𝑆 are bounded in [−1, 1], we can apply the above and get

‖𝑇1−𝛿′𝐹1‖𝑘‖𝑇1−𝛿𝐺𝑆‖𝑘−1
𝑘 ≤ ‖𝑇1−𝛿′/2𝐹1‖(2+𝛿′)/𝑘

2 ‖𝑇1−𝛿/2𝐺𝑆‖(𝑘−1)(2+𝛿)/𝑘
2 .
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Expressing 𝐺𝑆 as Fourier coefficients of 𝑔, we have

‖𝑇1−𝛿/2𝐺𝑆‖2
2 = ∑

𝑄⊆𝑅,𝑄∩[𝑑]=𝑆
(1 − 𝛿/2)2|𝑄|−2|𝑆| ̂𝑔2

𝑄

≤ ∑
𝑆⊆𝑄⊆𝑅

(1 − 𝛿/2)2|𝑄|−2|𝑆| ̂𝑔2
𝑄

≤ (1 − 𝛿/2)−2|𝑆| ⋅ Inf𝑆(𝑇1−𝛿′/2𝑔) ,

where in the last step we used 𝛿 ≥ 𝛿′. For 𝐹1, we relate it with 𝑓 as follows

‖𝑇1−𝛿′/2𝐹1‖2
2 ≤ (1 − 𝛿′/2)2 ⋅ Inf1(𝑇1−𝛿′/2𝑓) .

Plugging this two upper-bounds back, we have that the LHS is at most

∑
𝑆⊆[𝑑],𝑆 is odd

Inf1(𝑇1−𝛿′/2𝑓)(2+𝛿)/2𝑘 ⋅ Inf𝑆(𝑇1−𝛿′/2𝑔)(𝑘−1)(2+𝛿)/2𝑘 ,

where we also used 𝛿 ≥ 𝛿′. By the hypothesis that

min {Inf1(𝑇1−𝛿′/2𝑓), Inf𝑆(𝑇1−𝛿′/2𝑔)} ≤ 𝜏 ,

either Inf1(𝑇1−𝛿′/2𝑓)𝛿/2𝑘 ≤ 𝜏𝛿/2𝑘, or Inf𝑆(𝑇1−𝛿′/2𝑔)(𝑘−1)𝛿/2𝑘 ≤ 𝜏 (𝑘−1)𝛿/2𝑘 for
each 𝑆 in the sum. In either case, we can bound the above by

𝜏𝛿/2𝑘 ⋅ ∑
𝑆⊆[𝑑],𝑆 is odd

Inf1(𝑇1−𝛿′/2𝑓)1/𝑘 ⋅ Inf𝑆(𝑇1−𝛿′/2𝑔)(𝑘−1)/𝑘

≤ 𝜏𝛿′/2𝑘 ⋅ ∑
𝑆⊆[𝑑],𝑆 is odd

(Inf1(𝑇1−𝛿′/2𝑓) + Inf𝑆(𝑇1−𝛿′/2𝑔))

≤ 𝜏𝛿′/2𝑘 ⋅ ⎛⎜
⎝

2𝑑 Inf1(𝑇1−𝛿′/2𝑓) + ∑
𝑆⊆[𝑑],𝑆 is odd

Inf𝑆(𝑇1−𝛿′/2𝑔)⎞⎟
⎠

.

This completes the proof.



Chapter 5

Hardness of Gap𝑠-𝑘-CSP

In this chapter, we study the complexity of Boolean Gap𝑠-𝑘-CSP problems, that
is, to understand how hard it is to distinguish satisfiable 𝑘-CSP instances from 𝑘-
CSP instances that are far from satisfiable. In particular, we are interested in how
the soundness parameter 𝑠 decreases as the arity 𝑘 grows. Hardness results of this
type are usually proved by giving a predicate 𝑃 of arity 𝑘 that has few accepting
inputs, and show that 𝑃 is approximation resistant on satisfiable instances, that is,
Gap𝜌(𝑃)+𝜀-𝑃 is NP-hard.

Let us consider the predicate of arity 𝑘 that is a conjunction of 𝑘/3 E3-Sat
constraints. We can derive the approximation resistance of this predicate from the
approximation resistance of E3-Sat. The density of this predicate is (7/8)𝑘/3 ≈
20.94𝑘/2𝑘. Although it tends to 0 as 𝑘 → ∞, it is quite far from the best hardness
one would expect.

In this chapter, we give a predicate 𝑃 of arity 𝑘 that has 2𝑂(𝑘1/3) accepting
assignments, and prove that Gap𝜌(𝑃)+𝜀-𝑃 is NP-hard. This is an improvement
over the best previous known ratio of 2𝑂(𝑘1/2)/2𝑘 by Håstad and Khot [55], though
still a long way from the performance of the best algorithm, which only achieves
around Θ(𝑘)/2𝑘.

In fact, even for arity as small as 𝑘 = 4, 5, there is no complete characterization
of hardness of Gap𝑠-𝑘-CSP. Håstad [51] proved that E𝑘-Sat is approximation
resistant on satisfiable instances. In [55], the authors started by showing that for
a certain Boolean predicate on 5 variables with 24 accepting inputs, distinguishing
between satisfiable instances and (1/2 + 𝜀)-satisfiable instances is hard. Then,
they apply an iterated construction not too different from that in [96] to get a
sparse predicate that is hard to approximate. Assuming the 𝑑-to-1 Conjecture,
O’Donnell and Wu proved a strong result in [90] that the NotTwo predicate
is approximation resistant on satisfiable instances. The density of NotTwo is
𝜌(NotTwo) = 5/8, and there is a 5/8-approximation algorithm for Max-3-CSP
by Zwick [106]. Their approach was generalized by Tang [100] to Max-3-CSP𝑞
where 𝑞 is a prime greater than 3, and in Chapter 4, we extended their method to

71
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show approximation resistance for Boolean predicates of arity 𝑘 ≥ 3 that accepts a
strict superset of inputs of odd parity.

Recently, Håstad [54] and Wenner [104] proved approximation resistance for the
above predicates without assuming the 𝑑-to-1 Conjecture. Their proofs are based
on new analytic tools as well as Khot’s Smooth-Label-Cover [68]. We note
that several previous results that bypassed the UGC [68, 72, 38, 46] started from
hardness of Smooth-Label-Cover.

We could relax the perfect completeness condition, and try to understand the
complexity of Gap1−𝜀,𝑠-𝑘-CSP. Designing algorithms for such problems may be-
come much more challenging with this seemingly small change. As we have seen
in Section 3.2, for the E𝑘-Lin predicate, we can solve Gap1,1-E𝑘-Lin in poly-
nomial time, whereas for Gap1−𝜀,𝑠-E𝑘-Lin, even doing something non-trivial for
𝑠 = 1/2 + 𝜀 is NP-hard.

The other side of this is that proving hardness for Gap1−𝜀,𝑠-𝑘-CSP might
seem somewhat more tractable. This is still, by no means, an easy task. In [97],
Samorodnitsky and Trevisan showed approximation resistance of the Hadamard𝐾
predicate assuming the UGC. This also implies a UG-hardness of 𝑂(𝐾)/2𝐾 for
general 𝑘-CSP, matching, up to multiplicative constant factor, the performance of
the algorithm by Charikar, Makarychev and Makarychev [25]. For some time,
not much progress has been made in settling the NP-hardness of Gap1−𝜀,𝑠-𝑘-
CSP. Indeed, until recently, the best soundness for Gap1−𝜀,𝑠-𝑘-CSP assuming
NP-hardness has been 2𝑂(𝑘1/2)/2𝑘 by Samorodnitsky and Trevisan [96]. Engebret-
sen and Holmerin [36] later improved the constant in the exponents and pointed
out some technical difficulties in getting better hardness than 2𝑂(𝑘1/2)/2𝑘 using
certain kind of PCP reduction. A major advancement came recently, when Siu On
Chan proved the NP-hardness of Gap-Hadamard𝐾. Chan introduced the idea of
using direct sums of PCPs to improve soundness, which worked very well for pred-
icates that are subgroups of a domain. In particular, the accepting assignments of
the Hadamard𝐾 predicate is a subgroup under elementwise product, and Chan’s
result implies that it is approximation resistant assuming only P ≠ NP.

On the face of it, Chan’s new idea does not seem to be applicable for Gap𝑠-𝑘-
CSP. This is because in the setting of [24], for his direct sum technique to work,
the predicates need to be a subgroup of the domain. For Boolean predicates, this
means that the accepting inputs of a predicate form a linear subspace, and as we
should all be familiar by now, Gap𝑠-𝑘-CSP with these predicates can be decided
in polynomial time.

It is therefore an interesting question whether we could combine these recent
developments to get approximation resistance result for Max-𝑃 on satisfiable in-
stances for predicate 𝑃 sparser than the one in Håstad and Khot [55].

An immediate proposal to achieve tight lower-bound for Max-𝑘-CSP on sat-
isfiable instances would be to construct predicates as in [59, 104], that is, adding
a single additional accepting assignment to the Hadamard𝐾 predicate of arity
2𝑘 − 1. However, this simple approach does not work—the accepting inputs of
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Hadamard𝐾 form a 𝑘-dimensional subspace, so if we add 𝑑 new accepting inputs
to it and get some other predicate 𝑃 ′, we only need a (𝑘 + 𝑑)-dimensional subspace
to contain all the accepting inputs of 𝑃 ′. Let 𝑄 be the predicate that accepts
exactly all inputs from this (𝑘 + 𝑑)-dimensional subspace. Given any satisfiable
Max-𝑃 ′ instance with satisfying assignment 𝛼, we replace the predicate 𝑃 ′ in each
constraint with the predicate 𝑄. The solution space of the instance with predicate
𝑄 is just a linear subspace satisfying the following:

• It contains the solution 𝛼 to the original instance with predicate 𝑃 ′.

• If we project the solution space to the set of variables in each constraint, the
resulting subspace has dimension at most (𝑘 + 𝑑).

Therefore, if we sample a random point from this linear subspace, then for each
constraint, the probability that we hit 𝛼 restricted to the variables in that constraint
(and hence satisfy the constraint with predicate 𝑃 ′) is at least 1/2𝑘+𝑑. Thus
whenever 𝑑 = 𝑜(2𝑘), the expected performance of the above sampling method beats
simple random assignment, which only gives (2𝑘 + 𝑑)/22𝑘 .

The problem with adding more accepting assignments to Hadamard𝐾 is that
the resulting predicate does not have the group structure as in [24]. If we still take
many rounds of direct sums as in [24], then to ensure perfect completeness, we
need to accept many assignments that are products of the additional assignments
we added and end up with a predicate that has more accepting assignments than
we would want. On the other hand, as is demonstrated in [24], having more rounds
of direct sum helps us to improve soundness dramatically and so if we are looking
for sparse predicates that are approximation resistant, it would be natural to have
more rounds of proofs in the direct sum.

In this chapter, we attempt to strike a balance. The following is a formal
statement of the theorem we prove in this chapter.

Theorem 5.1. There is a predicate 𝑃 of arity 𝐾 with density 2𝑂(𝐾1/3)/2𝐾, for
which Gap1,𝜌(𝑃)+𝜀-𝑃 is NP-hard for any constant 𝜀 > 0.

The construction is based on many ideas developed in a number of previous
works, including [36, 104, 24]. On the highest level, we use direct sum of several
PCPs to get improved soundness result. However, as argued above, we also want
to limit the number of PCPs involved. Therefore, we use Long-Code-based PCP
constructions that are already rather efficient, for example those used by Enge-
bretsen and Holmerin [36]. In [104], Wenner showed how different types of noise
operators behave similarly when the reduction is based on Smooth-Label-Cover.
This is helpful when analyzing soundness of PCPs in that it allows us to move from
correlated noise with perfect completeness to independent noise that are not perfect
but easier to analyze. We also use a multivariate invariance theorem in [104], which
extends methods of Mossel et al. [87, 86] to projection games. Similar techniques
were developed also in other works such as [89] as well as in [24].
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5.1 Chan’s Direct Sum of PCPs

Before we describe our construction, let us first have a look at the main ideas in
Chan’s work [24].

Recall that for 𝑟 ∈ ℕ+ and 𝐾 ∶= 2𝑟 − 1, the Hadamard𝐾 predicate is defined
on variables {𝑥𝑆}∅≠𝑆⊆[𝑟], and the value of the predicate is defined as

Hadamard𝐾(𝑥) = { 1 ∀𝑆 ⊆ [𝑟], |𝑆| > 1, 𝑥𝑆 = ∏𝑖∈𝑆 𝑥{𝑖}
0 otherwise.

In [24], Chan proved that Hadamard𝐾 is approximation resistant assuming P ≠
NP.

In Section 4.1, we described a typical reduction for inapproximability results,
where one first sample one edge from some Label-Cover instance and use a set of
constraints to test whether the assignment to the variables correspond to a Long-
Code encoding of a good labeling. Briefly speaking, in Chan’s direct sum PCP, we
now sample 𝐾 edges and run 𝐾 independent copies of the above test. In the 𝑖-th
PCP, the 𝑖-th query is a uniform random string from {−1, 1}𝐿 and all other queries
are sampled from {−1, 1}𝑅 as described below in Definition 5.3. In a correct proof,
the strategies are expected to be products of Long-Code encoding the labeling of
the vertices.

We now formally define the PCP and how queries are sampled. In the following
description, we identify integers from [𝐾] with non-empty subsets of [𝑟] in some
canonical way. First we describe the test distribution for a single PCP, indexed by
non-empty sets ∅ ≠ 𝑆 ⊆ [𝑟].
Definition 5.2. Let 𝑒𝑆 be an edge and 𝜋 be the constraint on 𝑒. Denote the set of
possible queries to the 𝑇 -th position by 𝑄𝑇 , where

𝑄𝑇 = { {−1, 1}𝐿 𝑇 = 𝑆
{−1, 1}𝑅 𝑇 ≠ 𝑆.

The test distribution 𝒯𝑆,𝑒𝑆
is a distribution on ∏∅≠𝑇⊆[𝑟] 𝑄𝑇 . To sample query

(𝑞𝑇 )𝑇⊆[𝑟] from 𝒯𝑆,𝑒𝑆
, first sample 𝑞𝑆 from {−1, 1}|𝐿| uniformly at random. Then,

for each 𝑖 ∈ [𝑅], let {𝑞𝑇,𝑖}𝑇≠𝑆 be a uniformly random accepting assignment of
Hadamard𝐾, conditioned on the 𝑆-th bit being equal to 𝑞𝑆,𝜋(𝑖). Finally, indepen-
dently for each bit, we add noise by resampling from the uniform distribution on
{−1, 1} with probability 𝜂.

The final test distribution in the PCP is a product of the above distribution.

Definition 5.3. Let (𝑈, 𝑉 , 𝐸, 𝐿, 𝑅, Π) be a Label-Cover instance. For 𝑖 ∈ [𝐾],
define 𝒱𝑖 = 𝑉 𝑖−1 × 𝑈 × 𝑉 𝐾−𝑖. For each 𝐯 ∈ 𝒱𝑖, the proof contains function
𝐟𝐯 ∶ ({−1, 1}𝑅)𝑖−1 × {−1, 1}𝐿 × ({−1, 1}𝑅)𝐾−𝑖 → {−1, 1}. The verifier checks
the proof as follows:
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1. Sample independently 𝐾 = 2𝑟 − 1 uniformly random edges {𝑒𝑆}∅≠𝑆⊆[𝑟]. De-
note 𝑒𝑆 = {𝑢𝑆, 𝑣𝑆}.

2. Sample queries {𝐪𝑖}𝐾
𝑖=1 from distribution ∏∅≠𝑇⊆[𝑟] 𝒯𝑇,𝑒𝑇

.

3. Let 𝐯𝑖 = (𝑣1, … , 𝑣𝑖−1, 𝑢𝑖, 𝑣𝑖+1, … , 𝑣𝐾). Accept if

Hadamard𝐾(𝐟𝐯1
(𝐪1), … , 𝐟𝐯𝐾

(𝐪𝐾)) = 1.

In a correct proof, the function 𝐟𝐯 is the product of Long-Code encodings of
the labeling of each vertex in 𝐯. That is, suppose we have a labeling 𝜎 for the
Label-Cover instance, then for 𝐯 = (𝑣1, … , 𝑣𝑖−1, 𝑢𝑖, 𝑣𝑖+1, … , 𝑣𝐾), we expect

𝐟𝐯 = (
𝑖−1
∏
𝑗=1

𝜒{𝜎(𝑣𝑗)}) ⋅ 𝜒{𝜎(𝑢𝑖)} ⋅ (
𝐾
∏

𝑗=𝑖+1
𝜒{𝜎(𝑣𝑗)}) .

It should be clear that for the completeness case to hold, it is important that the
element-wise product of 𝐾 accepting inputs has to be an accepting input.

Remark. As in the ordinary case, we require that the functions 𝐟𝐯 are folded in
the following sense — for any 𝑗 ∈ [𝐾], query {𝐪𝑗,𝑖}𝑖∈[𝐾] and 𝑖0 ∈ [𝐾] we have

𝐟𝐯(𝐪𝑗,1, … , −𝐪𝑗,𝑖0
, … , 𝐪𝑗,𝐾)

= −𝐟𝐯(𝐪𝑗,1, … , 𝐪𝑗,𝑖0
, … , 𝐪𝑗,𝐾) .

Theorem E.1 along with Theorem A.1, 6.9 and C.2 of Chan [23] shows com-
pleteness and soundness of the above reduction and we summarize in the following
theorem.

Theorem 5.4. Fix some small 𝜂, 𝛿 > 0. Let 𝜎 be the soundness of Label-Cover,
satisfying 𝛿 = poly(𝐾/𝜂) ⋅ 𝜎Ω(1). Given a Label-Cover instance 𝐿𝐶𝐿,𝑑𝐿, we
have the following:

1. If 𝐿𝐶𝐿,𝑑𝐿 has value 1, the above verifier accepts a correct proof with proba-
bility at least 1 − 𝐾2𝜂.

2. If 𝐿𝐶𝐿,𝑑𝐿 has value at most 𝜎, then given any proof the verifier accepts with
probability at most (𝐾 + 1)/2𝐾 + 2𝛿.

5.2 Proof Overview

Fix some 𝑘. Given 𝜀, the starting point of our reduction is a (𝐽, 𝜉)−Smooth-𝑘-
Multi-Layered-Label-Cover, where 𝐽 and 𝜉 are constants solely dependent on
𝜀 and 𝑘 that we will specify later.
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The predicate. Let

𝒮3 ∶= {𝑆 ⊆ [𝑘] ∣ |𝑆| = 3} and 𝒮1 ∶= {𝑆 ⊆ [𝑘] ∣ |𝑆| = 1}.

The predicate is on variables {𝑥(𝑆)}𝑆∈𝒮1∪𝒮3
taking values from {−1, 1}. We call the

variables 𝑥({𝑖}) singleton variables and the remaining ones parity check variables.
The predicate accepts if there exists �⃗� ∈ {−1, 1}𝒮1∪𝒮3 such that the number of −1
entries in �⃗� is no more than 𝑘, and

𝑤𝑆𝑥(𝑆) ⋅ ∏
𝑖∈𝑆

𝑤{𝑖}𝑥({𝑖}) = 1

for all 𝑆 ∈ 𝒮3.
We can view �⃗� as an error vector, and the predicate accepts inputs that are no

more than Hamming distance 𝑘 away from an assignment that satisfies all parity
checks.

The predicate is on 𝑘 + (𝑘3) variables, and it has

𝑂 (2𝑘 ⋅ ((𝑘3) + 𝑘
𝑘 )) = 2𝑂(𝑘 log 𝑘)

accepting inputs, thus if we denote the arity of the predicate by 𝐾, then its density
is 2𝑂(𝐾1/3)/2𝐾, where the 𝑂 hides logarithmic factors.

Our reduction is based on direct sums of PCPs as described in Section 5.1. We
prove that all non-constant terms in the Fourier expansion of Equation (4.1) are
small.

We first point out several challenges in applying the direct sum technique in our
case.

One crucial difference between Chan’s proof and ours is that we require per-
fect completeness. This means that sometimes there would be perfect correlation
between certain queries which makes it possible for provers to find good cheating
strategies. In Chan’s proof as well as in many related results where perfect com-
pleteness is not required, one can usually break this correlation by applying some
independent noise to each query bit. However, in the case of perfect completeness,
we cannot afford perturbing each bit independently, and thus we need to take ex-
tra care when designing test distributions. That is the main reason our predicate
accepts inputs that almost satisfy all (𝑘3) linear constraints. In some sense, these
extra accepting inputs serve as noise that breaks up perfect correlations.

Another important property that Chan uses is the “group” structure of the
predicate. This makes it relatively easy to take direct sums of a large number of
PCPs, each handling a small number of non-constant terms from Equation (4.1),
without worrying too much about the completeness of the resulting PCP. Our
predicate, however, does not satisfy this property due to the extra “noise” we
added. It is certainly possible that if we take the sum of two assignments that
are of distance 𝑘 away from assignments that satisfies all linear equations, we end
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up with something that is distance 2𝑘 away from an assignment that satisfies all
linear constraints, and that breaks perfect completeness. To avoid this situation,
we limit both the number of PCPs in the direct sum and in each PCP the distance
from an assignment that satisfies all linear constraints. More specifically, in our
construction, the queries to each PCP are generated such that if the provers (of
each individual PCP) answer according to some consistent Long-Code, then the
answers is at most distance 1 away from an assignment that satisfies all linear
equations. When taking direct sum of the 𝑘 PCPs, an answer that is the direct
sum of 𝑘 Long-Code would give us an answer at most distance 𝑘 away from
satisfying all linear equations, which is exactly what would be accepted by our
predicate.

It remains to find a number of suitable PCPs. If we try to generalize previous
approaches, for example those in [96, 36], to larger predicates such as Hadamard𝐾,
it is instructive to look at the main obstacles there. One of the main adversarial
strategies that we need to consider is that of inconsistent Long-Code encodings,
that is, the assignments represent valid Long-Code encoding of labelings, but
the labelings do not satisfy the projection constraints on the edges.. For example,
consider a predicate 𝑃 on variable (𝑥1, … , 𝑥𝑘) and a simple PCP reduction where
we sample an edge {𝑢, 𝑣} and query functions 𝑓𝑢 and 𝑔𝑣 according to some test
distribution 𝒯 as described in Section 4.1. For simplicity, assume that the query to
𝑓𝑢 corresponds to input variable 𝑥1, and the remaining queries are on 𝑔𝑣. Suppose
further that for a 1/2+𝛿 fraction of the accepting inputs of 𝑃 , we have 𝑥2𝑥3𝑥4 = 1
(both Hadamard𝐾 and the predicate we are studying here have properties similar
to this.) Let 𝑔𝑣 be long code for some arbitrary label 𝑟 ∈ 𝑅. Observe that the
non-constant term 𝑔𝑣(𝑥2)𝑔𝑣(𝑥3)𝑔𝑣(𝑥4) will always have expectation roughly order
of 𝛿 simply due to the requirements on 𝒯. In this case, we get a large non-constant
term but it does not help us find a consistent labeling for Label-Cover. A similar
argument can be made for Multi-Layered-Label-Cover. Chan’s construction
in [24] solves this problem by making sure that for each term, in at least one of the
many PCPs in the direct sum the queries are on different functions. As discussed
before, since we are aiming for fewer PCPs in the direct sum, it would be good
if each PCP can carry out as many consistency checks as possible, and Multi-
Layered-Label-Cover becomes a very natural choice. We also need to decide
which query should be in which layer for each PCP so that we do not miss any sets
of variables that has linear relations. This is mostly done in Section 5.3.1.

Now we describe the PCPs in more details.
The PCPs. Let 𝒞 = {𝜎0, … , 𝜎𝑘−1} be the set of cyclic permutations on [𝑘].

The permutation 𝜎𝑖 maps 𝑖 to 𝑘, 𝑖 + 1 to 1, and so on. We identify 0 with 𝑘, and
thus 𝜎0 is the identity permutation. Each permutation corresponds to a PCP for
a 𝑘-Layered-Label-Cover instance, and the permutation decides which query
should be in which layer in the Multi-Layered-Label-Cover. We design a test
distribution for each permutation. As stated above, the final proof is the direct
sum of these 𝑘 PCPs.

We now describe the 𝑖-th PCP. It is based on a 𝑘-Layered-Label-Cover
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instance, and there are 𝑘+(𝑘3) queries, each corresponding to an input variable. We
denote the queries as 𝑥(𝑆). For 𝑆 ∈ 𝒮1 ∪ 𝒮3, define 𝑚𝑖(𝑆) ∶= max 𝜎𝑖(𝑆) to be the
maximum element of 𝑆 under permutation 𝜎𝑖. The query 𝑥(𝑆) is in layer 𝑚𝑖(𝑆).
Let

𝒱𝑖(𝑆) ∶= 𝑈𝑘−𝑚𝑖(𝑆) × 𝑉 𝑚𝑖(𝑆)−1

be the set of vertex tuples in layer 𝑚𝑖(𝑆). The proof has a function for each
vertex tuple in 𝒱𝑖(𝑆), and the input to the functions are {−1, 1} strings indexed by
the labelings 𝐿𝑘−𝑚𝑖(𝑆) × 𝑅𝑚𝑖(𝑆)−1 in layer 𝑚𝑖(𝑆). We denote the domain of the
functions as 𝑋(𝑆)

𝑖 . In a correct proof of a correct labeling, the function would be
a Long-Code encoding a proper labeling for all vertices in the tuple. We require
that all functions are folded over constant.

The test distributions. We first define the test distributions for each indi-
vidual PCP.

Fix 𝑖 ∈ [𝑘] and consider the 𝑖-th PCP. For notational simplicity we omit 𝑖 in the
subscript for now. We first independently sample 𝑘 − 1 edges ⃗𝑒 = {𝑒1, … , 𝑒𝑘−1}.
For 𝑆 ∈ 𝒮1, sample 𝑥(𝑆) ∈ 𝑋(𝑆) uniformly at random. For 𝑆 = {𝑠1, 𝑠2, 𝑠3} ∈ 𝒮3,
let 𝑚 = 𝑚(𝑆) be the layer in which query 𝑥(𝑆) is located, 𝑚𝑗 = 𝑚(𝑠𝑗) for 𝑗 = 1, 2, 3
be the layer query 𝑥({𝑠𝑗}) is in, and set

𝑥(𝑆)
𝑟 =

3
∏
𝑗=1

𝑥({𝑠𝑗})
𝜋 ⃗𝑒,𝑚→𝑚𝑗 (𝑟)

for all labeling 𝑟 ∈ 𝐿𝑘−𝑚 × 𝑅𝑚−1.
We then make use of the extra inputs allowed by the predicate to add some

“noise” to the distributions. As discussed above, the resulting distribution must
have the property that the output obtained by applying some consistent Long-
Code is at most distance 1 away from an assignment that satisfies all (𝑘3) equations.
The idea is to perturb one of the variables 𝑥(𝑆). For each 𝑟 ∈ 𝐿𝑘−1, pick a uniformly
random set 𝑁𝑟 ∈ 𝒮1 ∪ 𝒮3, and for each

𝑡 ∈ 𝜋−1
⃗𝑒,𝑚(𝑁𝑟)→1(𝑟) ,

set 𝑥(𝑁𝑟)
𝑡 to a uniform random bit independently with probability 1/2.

We denote the test distribution by 𝒯. For each 𝑟 ∈ 𝐿𝑘−1, let 𝒯𝑟 be the marginal
distribution of the bits that map to 𝑟 under 𝜋 ⃗𝑒,𝑙→1 for all 𝑙 ∈ [𝑘]. Observe that we
have 𝒯 = ⨂𝑟∈𝐿𝑘−1 𝒯𝑟.

Let us start by analyzing the standard completeness case.

Lemma 5.5. For any sampling of edges, let 𝑓 (𝑆) be the functions we are querying,
and let 𝑥(𝑆) be the corresponding queries. If the 𝑘-layered Label-Cover instance
has a labeling that satisfies all the edges, then we can find functions 𝑓 (𝑆) such that
the answers

{𝑓 (𝑆)(𝑥(𝑆))}𝑆∈𝒮1∪𝒮3
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is at most Hamming distance 1 away from an assignment that satisfies all linear
constraints on 3 singleton variables and 1 parity check variable.

Proof. The argument is similar to a standard completeness argument.
Fix a labeling that satisfies all the edges. The proof in the PCP consists of

Long-Code encoding the labeling of all hybrid vertex tuples.
Let 𝑟 ∈ 𝐿𝑘−1 be the labeling for the vertex tuple in layer 1. The answers we

get from the long codes is the same as returning one bit from each query generated
according to 𝒯𝑟. The claim follows by observing that for each tuple of bits produced
as above, either it already satisfies all linear constraints, or it would satisfy all linear
constraints after we flip the 𝑁𝑟-th bit.

Denote the test distribution of the 𝑖-th PCP defined above as 𝒯𝑖. The dis-
tribution of the final composed PCP is simply the product of the individual test
distributions ⨂𝑘

𝑖=1 𝒯𝑖. The verifier samples the edges and the inputs to the func-
tions, queries the functions (those that correspond to the chosen vertex tuples) and
accepts if the answers returned by the functions are accepted by the predicate.

It is not hard to see from above discussions that the above PCP has perfect
completeness.

Lemma 5.6. If the 𝑘-Layered-Label-Cover instance has a labeling that satisfies
all edges, then there exists a set of functions {𝑓 (𝑆)} such that after querying {𝑓 (𝑆)}
the verifier accepts with probability 1.

Proof. We let our final proof be the product of proofs of the 𝑘 individual PCPs
given by Lemma 5.5. Since the answer for each proof is at most distance 1 away
from an assignment that satisfies all linear constraints, their product is at most
distance 𝑘 away, which is exactly what the verifier (and our predicate) accepts.

Remark. We briefly discuss some of the difficulties in getting hardness result better
than 2𝑂(𝐾1/3)/2𝐾. The key issue here is not unlike the one discussed in [36]. As
we will see in Section 5.3, our construction requires us to identify a permutation
cover that covers all the queries, otherwise products of a random set of dictatorship
functions would be a good cheating strategy.

To be more specific, one possibility is to consider a predicate on 𝑘+(𝑘
4) variables

which does “parity checks” on tuples of 4 variables and accepts everything that has
less than 𝑡 errors for some 𝑡, and devise a protocol which is a direct sum of 𝑡 PCPs.
As we can see from Section 5.3.1, in this case we actually need Ω(𝑘2) permutations
to cover all queries which means that 𝑡 = Ω(𝑘2). Such a predicate already has much
more accepting inputs than the one we study here.
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5.3 Soundness Analysis

In this section, we analyze the soundness of our PCP. We set

𝜀1 = 𝜀/(7𝑘3 + 1),
𝜉 = 𝜀2

1 ,

𝜌0 = 1 − 1/4(𝑘
3) ,

𝐽 = 2⌈log𝜌0
𝜀1⌉ ,

and 𝛾 such that 1 − (1 − 𝛾)𝐽/2 < 𝜀1. Note that this gives 𝜌𝐽/2
0 ≤ 𝜀1, and that all

parameters depend only on 𝑘 and 𝜀. Also 𝛾 < 𝜀.
As discussed in Section 5.2, we would like to prove that for all 𝒮 ≠ ∅, the

expectation

𝐄 [ ∏
𝑆∈𝒮

𝑓 (𝑆)(𝑥(𝑆))] (5.1)

is small unless there is good labeling.

Remark. Since we are able to bound (5.1) for any 𝒮 ≠ ∅, we actually proved that
our predicate is useless in the sense of [9].

Remark. The functions 𝑓 (𝑆) actually depend on the underlying edges we sampled.
For notational convenience we suppress this dependency and save another layer of
subscripts (of subscripts of subscripts).

As discussed in previous sections, we need to show that for each non-constant
term, there is at least one PCP among those in the direct sum, such that if the
expectation of the term under the PCP is large, we can find a good labeling for the
underlying Label-Cover instance by looking at the functions 𝑓 restricted to that
PCP. Formally, we have the following lemma which is a reformulation of Lemma
5.3 in Chan [24].

Lemma 5.7. Let 𝒯 = ⨂𝑘
𝑖=1 𝒯𝑖, where 𝒯𝑖 is the test distribution for the 𝑖-th PCP.

Suppose for some 𝒮 ≠ ∅, we have

∣𝐄
𝒯

[ ∏
𝑆∈𝒮

𝑓 (𝑆)(𝑥(𝑆))]∣ = 𝛿 ,

then for any 𝑖 ∈ [𝑘], there exists functions 𝑔(𝑆) whose inputs are query bits to the
𝑖-th PCP, such that

∣𝐄
𝒯𝑖

[ ∏
𝑆∈𝒮

𝑔(𝑆)(𝑥(𝑆))]∣ ≥ 𝛿 .
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Given 𝑓 (𝑆), we find 𝑔(𝑆) by fixing query bits that are not in the 𝑖-th PCP in a
way that does not lower the expectation.

Thus to bound each term, we need to carefully find an 𝑖, such that the test
restricted to the 𝑖-th PCP has small expectation. We show how to choose such 𝑖 in
Section 5.3.1. We would be back to the traditional setting with Label-Covers and
dictatorship testing from then on. In Section 5.3.2, we show that we can instead
look at the distribution where each individual bit is further perturbed independently
by some random noise. The way random noise is introduced is a bit similar to the
way we did it in Chapter 4. Then we show in Section 5.3.3 how to apply an
invariance-type theorem from [104] in this new setting to get our soundness result.

5.3.1 Permutation covering
Our 𝑘 PCPs use cyclic permutations 𝐶 ∈ 𝒞 to decide the layer of each query and
the inputs to the corresponding function. We first give a general definition of the
crucial property we need from such sets of permutations.

Definition 5.8. Let 𝒫 be a set of permutations on [𝑘]. We say that 𝒫 covers 𝒮1∪𝒮3
if for all ∅ ≠ 𝒮 ⊆ 𝒮1 ∪ 𝒮3, there exists a permutation 𝜎 ∈ 𝒫, some 𝑗, 𝑙0 ∈ [𝑘], such
that

∣ {𝑆 ∈ 𝒮 ∣ 𝑗 ∈ 𝑆, max 𝜎(𝑆) = 𝑙0} ∣ is odd .

We now reformulate the above definition and prove a necessary and sufficient
condition for general sets of permutations 𝒫 to cover 𝒮1 ∪ 𝒮3.

For each set 𝑆 ∈ 𝒮1 ∪ 𝒮3, we construct a Boolean vector 𝑣𝒫
𝑆 as the following:

the elements in the vector are indexed by a tuple (𝑖, 𝑙, 𝑗) ∈ [|𝒫|] × [𝑘] × [𝑘], and
𝑣𝒫

𝑆,(𝑖,𝑙,𝑗) = 1 if max 𝜎𝑖(𝑆) = 𝑙 and 𝑗 ∈ 𝑆, and 𝑣𝑆,(𝑖,𝑙,𝑗) = 0 otherwise.

Proposition 5.9. The set of permutations 𝒫 covers 𝒮1 ∪ 𝒮3 if and only if the
vectors {𝑣𝒫

𝑆}𝑆∈𝒮1∪𝒮3
are linearly independent over 𝔽2.

Proof. If the set 𝒫 does not cover 𝒮1 ∪ 𝒮3, then there exists a set ∅ ≠ 𝒮 ⊆ 𝒮1 ∪ 𝒮3,
such that for any permutation 𝜎𝑖 ∈ 𝒫 and 𝑗, 𝑙0 ∈ [𝑘], we have that

∣ {𝑆 ∈ 𝒮 ∣ 𝑆 ∋ 𝑗, max 𝜎𝑖(𝑆) = 𝑙0} ∣ is even .

Observe that for any 𝑆 ∈ 𝒮1 ∪𝒮3, the segment of 𝑣𝒫
𝑆 indexed by (𝑖, 𝑙) for some fixed

𝑖 and 𝑙 is all zero if max 𝜎𝑖(𝑆) ≠ 𝑙, and otherwise it is exactly the character vector
of the set 𝑆. Therefore the above is equivalent to saying that for any 𝑖 ∈ [|𝒫|] and
𝑙0, we have

∑
𝑆∈𝒮

𝑣𝒫
𝑆,(𝑖,𝑙0) = 0,

where the summation is modulo 2. Since the above holds for all 𝑖 and 𝑙0, we have

∑
𝑆∈𝒮

𝑣𝒫
𝑆 = 0,
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or the vectors {𝑣𝒫
𝑆}𝑆∈𝒮 are linearly dependent.

Note that all the above steps are equivalent statements. Thus the other direction
also holds.

Remark. We can see from the above argument that it is necessary to have Ω(𝑘)
permutations in order to cover 𝒮1 ∪ 𝒮3, because otherwise we would have Θ(𝑘3)
vectors of dimension 𝑜(𝑘3) and thus they could not be linearly independent.

We now prove that the set of all cyclic permutations 𝒞 = {𝜎0, … , 𝜎𝑘−1} covers
𝒮1 ∪ 𝒮3.

Lemma 5.10. The set of all cyclic permutations 𝒞 = {𝜎0, … , 𝜎𝑘−1} covers 𝒮1∪𝒮3.

Proof. For any given collection of sets 𝒮 ⊆ 𝒮1 ∪ 𝒮3, we show how to find the cyclic
permutation 𝜎 and indices 𝑗, 𝑙0 ∈ [𝑘] required in Definition 5.8.

For a set 𝑆 ∈ 𝒮1 ∪ 𝒮3, let

span(𝑆) = min
𝜎𝑖∈𝒞

{max 𝜎𝑖(𝑆) − min 𝜎𝑖(𝑆)} ,

that is, the minimum distance between the largest and the smallest element under
cyclic permutations. Note that for singleton sets 𝑆 ∈ 𝒮1, we have span(𝑆) = 0.

For a given collection of sets 𝒮, let 𝑆 ∈ 𝒮 be a set with minimum span in 𝒮
where we break ties arbitrarily. Pick 𝑖0 such that 𝜎𝑖0

(𝑆) contains 1 and span(𝑆)+1
as its minimum and maximum element. Let 𝜎 ∶= 𝜎𝑖0

be the permutation we want,
and let 𝑙0 = span(𝑆) + 1.

Now we select 𝑗. If span(𝑆) = 0, then let 𝑗 = 𝜎−1(1) and we are done. This
is because for any non-singleton set 𝑆′, max 𝜎(𝑆) > 1, and for any singleton set
𝑆″ ≠ 𝑆, clearly 𝜎(𝑆″) ≠ 𝜎(𝑆). Thus 𝑆 would be the only set containing 𝑗 with
max 𝜎(𝑆) = 1 = 𝑙0.

If span(𝑆) ≠ 0, then 𝑆 has three elements, and there is no singleton set in 𝒮.
If there is any other non-singleton set 𝑆″ ∈ 𝒮 with max 𝜎(𝑆″) = span(𝑆) + 1,
then 𝜎(𝑆″) and 𝜎(𝑆) have the same maximum and minimum element, namely
span(𝑆) + 1 and 1. That leaves us with the middle element. But since 𝑆 ≠ 𝑆″, the
middle element must be different, so each of them appear only in one set, and setting
𝑗 to the inverse of any of the middle elements under 𝜎 would work. Otherwise we
take 𝑗 = max 𝑆.

For 𝒮 ⊆ 𝒮1 ∪ 𝒮3, we consider the PCP corresponding to the cyclic permutation
𝜎𝑖 ∈ 𝒞 covering 𝒮 given by Lemma 5.10. We denote the PCP as PCP𝑖. As discussed
before, we only need to show that if (5.1) is large even when restricted to PCP𝑖,
we can find a good labeling for the Label-Cover instance we started with.

For notational simplicity, we only prove the case where 𝑖 = 0, that is, for the
identity permutation 𝜎0. Arguments for general cyclic permutations are entirely
symmetric.
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5.3.2 Introducing Independent Noise
In this section, we show that perturbing the queries does not change the expectation
of the terms by too much.

Formally, let 𝒯′
𝑟 be the distribution where we first sample according to 𝒯𝑟, and

then resample each bit independently with probability 𝛾 according to its marginal
distribution in 𝒯𝑟—which in our case is uniform. Also define 𝒯′ = ⨂𝑟∈𝐿𝑘−1 𝒯′

𝑟.
We prove the following lemma which bounds the difference of expectation of (5.1)
under 𝒯 and 𝒯′.

Lemma 5.11. For any 𝒮 ⊆ 𝒮1 ∪ 𝒮3, we have

∣𝐄
𝒯

[ ∏
𝑆∈𝒮

𝑓 (𝑆)(𝑥(𝑆))] − 𝐄
𝒯′

[ ∏
𝑆∈𝒮

𝑓 (𝑆)(𝑥(𝑆))]∣ < 7𝑘3𝜀1 , (5.2)

where 𝜀1 = 𝜀/(7𝑘3 + 1) is as defined at the beginning of Section 5.3.

Fix some 𝑆0 ∈ 𝒮1 ∪ 𝒮3. Let 𝒯(𝑆0) be the distribution where under 𝒯, we inde-
pendently resample the bits in 𝑥(𝑆0) from the uniform distribution with probability
𝛾. We first show in Lemma 5.12 below that the expectation under 𝒯 is close to
that under 𝒯(𝑆0). Lemma 5.11 follows by applying similar arguments to each 𝑥(𝑆)

in succession.
For 𝑆 ∈ 𝒮1 ∪ 𝒮3, let 𝑚(𝑆) = max 𝑆 be the maximum element in 𝑆. Recall

that query 𝑥(𝑆) is located in layer 𝑚(𝑆), and for 𝑟 ∈ 𝐿𝑘−1, 𝒯𝑟 is the distribution
containing all bits in

{𝑥(𝑆)
𝑡 ∣ 𝑆 ∈ 𝒮1 ∪ 𝒮3, 𝜋𝑚(𝑆)→1(𝑡) = 𝑟},

that is, the query bits that map to the same 𝑟. We use 𝒯(𝑆0)
𝑟 to denote the marginal

distribution of 𝒯(𝑆0) on bits in

{𝑥(𝑆0)
𝑡 ∣ 𝜋𝑚(𝑆0)→1(𝑡) = 𝑟}.

Let 𝑚 = 𝑚(𝑆0).
Consider the difference of expectation between 𝒯 and 𝒯(𝑆0). If 𝑓 (𝑆0)(𝑥(𝑆0))

does not appear in the product, then there would be no difference. We now assume
otherwise. The following lemma shows that introducing independent noise on one
query does not change the expectation by too much.

Lemma 5.12. For any 𝒮 ⊆ 𝒮1 ∪ 𝒮3, we have

∣𝐄
𝒯

[ ∏
𝑆∈𝒮

𝑓 (𝑆)(𝑥(𝑆))] − 𝐄
𝒯(𝑆0)

[ ∏
𝑆∈𝒮

𝑓 (𝑆)(𝑥(𝑆))]∣ < 7𝜀1 . (5.3)
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In the rest of the section, we prove Lemma 5.12. The proof follows Wenner’s
approach [104], especially Lemmas 3.15 through 3.17.

For notational simplicity let 𝐹 ′ be the product of all terms but 𝑓 (𝑆0)(𝑥(𝑆0)) and
we abbreviate 𝑓 (𝑆0) as 𝑓 . We use 𝑋(𝑆0) to abbreviate

∏
𝑆∈𝒮1∪𝒮3,𝑆≠𝑆0

𝑋(𝑆) .

Similarly we define 𝑋(𝑆0)
𝑟 for 𝑟 ∈ 𝐿𝑘−1. The first step is to use Lemma 2.8 to bound

the correlation

𝜌(𝑋(𝑆0), 𝑋(𝑆0); 𝒯) and 𝜌(𝑋(𝑆0), 𝑋(𝑆0); 𝒯(𝑆0)) .
Since 𝒯 is simply a product of 𝒯𝑟 with different values 𝑟, by Lemma 2.6, we only
need to bound

𝜌(𝑋(𝑆0)
𝑟 , 𝑋(𝑆0)

𝑟 ; 𝒯𝑟) and 𝜌(𝑋(𝑆0)
𝑟 , 𝑋(𝑆0)

𝑟 ; 𝒯(𝑆0)
𝑟 ) .

Claim 5.13. For any 𝑆0 ∈ 𝒮3, the correlation 𝜌(𝑋(𝑆0)
𝑟 , 𝑋(𝑆0)

𝑟 ; 𝒯𝑟) is upper-bounded
by

𝜌0 = 1 − 1
4(𝑘3)

.

The same bound holds for 𝜌(𝑋(𝑆0)
𝑟 , 𝑋(𝑆0)

𝑟 ; 𝒯(𝑆0)
𝑟 ).

Proof. We divide 𝒯𝑟 into two parts: (i) the set 𝑆0 is chosen as 𝑁𝑟; or (ii) some set
other than 𝑆0 is chosen. It is not hard to verify that the marginal of 𝑋(𝑆0)

𝑟 after
conditioning on either of them remains uniform and thus we can apply Lemma
2.8. Let 𝜇 be the conditional distribution assuming (i) happens, and 𝜈 be the one
assuming (ii) happens. We have that

𝜌(𝑋(𝑆0)
𝑟 , 𝑋(𝑆0)

𝑟 ; 𝜈) = 1.
For the correlation of the other part, we have

𝜌(𝑋(𝑆0)
𝑟 , 𝑋(𝑆0)

𝑟 ; 𝜇) = 1
2 ,

achieved by dictatorship functions. Therefore, the overall correlation is upper-
bounded by

√(1 − 1/(𝑘
3)) + 1/(𝑘

3) ⋅ (1/2)2 ≤ √1 − 1/2(𝑘
3) < 1 − 1/4(𝑘

3) .

Intuitively, the correlation under 𝒯(𝑆0)
𝑟 could not exceed that under 𝒯𝑟 since

the noise we added are all independent. In particular, the part corresponding to

𝜌(𝑋(𝑆0)
𝑟 , 𝑋(𝑆0)

𝑟 ; 𝜈)
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becomes less than 1 due to lack of perfect correlation, and the part corresponding
to

𝜌(𝑋(𝑆0)
𝑟 , 𝑋(𝑆0)

𝑟 ; 𝜇)
remains the same. Thus the result follows by similar calculations as in 𝒯𝑟.

Take the Efron-Stein decomposition 𝑓 = ∑𝑇⊆𝐿𝑘−1 𝑓𝑇 . More specifically, for
𝑇 ⊆ 𝐿𝑘−1, we have that

𝑓𝑇 = ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

𝜋𝑚→1(𝑈)=𝑇

̂𝑓𝑈𝜒𝑈 .

Again for notational simplicity, we temporarily drop the subscript and write 𝜋𝑚→1
as 𝜋. We decompose the terms in the expectation in (5.3) as following

𝑓𝐹 ′ = 𝐹 ′ ∑
𝑇⊆𝐿𝑘−1

𝑓𝑇 = 𝐹 ′ ∑
𝑇⊆𝐿𝑘−1
|𝑇|≤𝐽/2

𝑓𝑇 + 𝐹 ′ ∑
𝑇⊆𝐿𝑘−1
|𝑇|>𝐽/2

𝑓𝑇 . (5.4)

We first bound the expectation of the high degree parts under both 𝒯 and 𝒯(𝑆0).
This is a standard correlation argument. We first consider the expectation

under 𝒯. Let 𝒰𝒯 be the conditional expectation operator mapping a function with
domain 𝑋(𝑆0) to a function with domain 𝑋(𝑆0) with respect to distribution 𝒯. We
have

∣
∣
∣
∣
𝐄
𝒯

⎡
⎢⎢
⎣

𝐹 ′ ∑
𝑇⊆𝐿𝑘−1
|𝑇|>𝐽/2

𝑓𝑇
⎤
⎥⎥
⎦

∣
∣
∣
∣
=

∣
∣
∣
∣
𝐄
𝒯

⎡
⎢⎢
⎣

𝐹 ′ ∑
𝑇⊆𝐿𝑘−1
|𝑇|>𝐽/2

𝒰𝒯𝑓𝑇
⎤
⎥⎥
⎦

∣
∣
∣
∣

. (5.5)

Note that the expectation on the right hand side is in fact taken under the marginals
of 𝒯 on 𝑋(𝑆0). Applying Cauchy-Schwarz and using the orthogonality of Efron-
Stein decomposition, we have

∣
∣
∣
∣
𝐄
𝒯

⎡
⎢⎢
⎣

𝐹 ′ ∑
𝑇⊆𝐿𝑘−1
|𝑇|>𝐽/2

𝑓 (𝑆0)
𝑇

⎤
⎥⎥
⎦

∣
∣
∣
∣

≤

√√√√√
⎷

𝐄
𝒯

⎡
⎢⎢
⎣

∑
𝑇⊆𝐿𝑘−1
|𝑇|>𝐽/2

(𝒰𝒯𝑓 (𝑆0)
𝑇 )

2⎤
⎥⎥
⎦

√𝐄
𝒯

[𝐹 ′2] (5.6)

≤
√√√√
⎷

∑
𝑇⊆𝐿𝑘−1
|𝑇|>𝐽/2

∥𝒰𝒯𝑓 (𝑆0)
𝑇 ∥

2

2
(5.7)

≤
√√√√
⎷

∑
𝑇⊆𝐿𝑘−1
|𝑇|>𝐽/2

𝜌2|𝑇|
0 ∥𝑓 (𝑆0)

𝑇 ∥
2

2
≤ 𝜌𝐽/2

0 ≤ 𝜀1 , (5.8)
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where the inequality in (5.8) follows from Proposition 2.36 and that the norm in
(5.8) is with respect to the marginal of 𝒯 on 𝑋(𝑆0), which is uniform. The analysis
for expectation under 𝒯(𝑆0) is identical as it only involves correlation. Therefore

∣𝐄
𝒯

[𝑓𝐹 ′] − 𝐄
𝒯(𝑆0)

[𝑓𝐹 ′]∣ ≤
∣
∣
∣
∣
𝐄
𝒯

⎡
⎢⎢
⎣

𝐹 ′ ∑
𝑇⊆𝐿𝑘−1
|𝑇|≤𝐽/2

𝑓𝑇
⎤
⎥⎥
⎦

− 𝐄
𝒯(𝑆0)

⎡
⎢⎢
⎣

𝐹 ′ ∑
𝑇⊆𝐿𝑘−1
|𝑇|≤𝐽/2

𝑓𝑇
⎤
⎥⎥
⎦

∣
∣
∣
∣
+2𝜀1 . (5.9)

Now we turn to the low degree parts. Further unraveling the Efron-Stein decom-
position, we have

𝐹 ′ ∑
𝑇⊆𝐿𝑘−1
|𝑇|≤𝐽/2

𝑓𝑇 (5.10)

= 𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝜋(𝑈)|≤𝐽/2

̂𝑓𝑈𝜒𝑈 (5.11)

= 𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝑈|=|𝜋(𝑈)|
|𝜋(𝑈)|≤𝐽/2

̂𝑓𝑈𝜒𝑈 + 𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝑈|>|𝜋(𝑈)|
|𝜋(𝑈)|≤𝐽/2

̂𝑓𝑈𝜒𝑈 . (5.12)

Following the terminology in [54, 104], we refer to the first term as shattered term,
and the second as non-shattered term. We study these two terms separately. From
(5.9), we have

∣𝐄
𝒯

[𝑓𝐹 ′] − 𝐄
𝒯(𝑆0)

[𝑓𝐹 ′]∣ (5.13)

≤ 2𝜀1+

∣
∣
∣
∣
∣
∣

𝐄
𝒯

⎡
⎢⎢⎢⎢
⎣

𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝑈|=|𝜋(𝑈)|
|𝜋(𝑈)|≤𝐽/2

̂𝑓𝑈𝜒𝑈

⎤
⎥⎥⎥⎥
⎦

− 𝐄
𝒯(𝑆0)

⎡
⎢⎢⎢⎢
⎣

𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝑈|=|𝜋(𝑈)|
|𝜋(𝑈)|≤𝐽/2

̂𝑓𝑈𝜒𝑈

⎤
⎥⎥⎥⎥
⎦

∣
∣
∣
∣
∣
∣

(5.14)

+

∣
∣
∣
∣
∣
∣

𝐄
𝒯

⎡
⎢⎢⎢⎢
⎣

𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝑈|>|𝜋(𝑈)|
|𝜋(𝑈)|≤𝐽/2

̂𝑓𝑈𝜒𝑈

⎤
⎥⎥⎥⎥
⎦

− 𝐄
𝒯(𝑆0)

⎡
⎢⎢⎢⎢
⎣

𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝑈|>|𝜋(𝑈)|
|𝜋(𝑈)|≤𝐽/2

̂𝑓𝑈𝜒𝑈

⎤
⎥⎥⎥⎥
⎦

∣
∣
∣
∣
∣
∣

. (5.15)

We first use smoothness to bound the non-shattered terms. The process is very
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similar to that in [104], and we get

∣
∣
∣
∣
∣
∣

𝐄
𝒯

⎡
⎢⎢⎢⎢
⎣

𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝑈|>|𝜋(𝑈)|
|𝜋(𝑈)|≤𝐽/2

̂𝑓𝑈𝜒𝑈

⎤
⎥⎥⎥⎥
⎦

∣
∣
∣
∣
∣
∣

≤ 2𝜀1 . (5.16)

The same argument holds under distribution 𝒯(𝑆0). For the difference involving
the shattered terms, we have

∣
∣
∣
∣
∣
∣

𝐄
𝒯

⎡
⎢⎢⎢⎢
⎣

𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝑈|=|𝜋(𝑈)|
|𝜋(𝑈)|≤𝐽/2

̂𝑓𝑈𝜒𝑈

⎤
⎥⎥⎥⎥
⎦

− 𝐄
𝒯(𝑆0)

⎡
⎢⎢⎢⎢
⎣

𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝑈|=|𝜋(𝑈)|
|𝜋(𝑈)|≤𝐽/2

̂𝑓𝑈𝜒𝑈

⎤
⎥⎥⎥⎥
⎦

∣
∣
∣
∣
∣
∣

(5.17)

=

∣
∣
∣
∣
∣
∣

𝐄
𝒯

⎡
⎢⎢⎢⎢
⎣

𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝑈|=|𝜋(𝑈)|
|𝜋(𝑈)|≤𝐽/2

̂𝑓𝑈𝜒𝑈

⎤
⎥⎥⎥⎥
⎦

− 𝐄
𝒯

⎡
⎢⎢⎢⎢
⎣

𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1

|𝑈|=|𝜋(𝑈)|
|𝜋(𝑈)|≤𝐽/2

(1 − 𝛾)|𝑈| ̂𝑓𝑈𝜒𝑈

⎤
⎥⎥⎥⎥
⎦

∣
∣
∣
∣
∣
∣

(5.18)

=
∣
∣
∣
∣
𝐄
𝒯

⎡
⎢⎢
⎣

𝐹 ′ ∑
𝑈⊆𝐿𝑘−𝑚×𝑅𝑚−1
|𝑈|=|𝜋(𝑈)|≤𝐽/2

(1 − (1 − 𝛾)|𝑈|) ̂𝑓𝑈𝜒𝑈
⎤
⎥⎥
⎦

∣
∣
∣
∣

(5.19)

≤ 1 − (1 − 𝛾)𝐽/2 ≤ 𝜀1 . (5.20)

The key step is (5.18) where we switch the distribution of the second term from
𝒯(𝑆0) to 𝒯. We rely crucially on the fact that |𝑈| = |𝜋(𝑈)|. To see why this
holds, denote the query to 𝑓 as 𝑥 (just for the current argument). Observe that
the variables 𝑥𝑡 are independent for 𝑡 ∈ 𝑈 with different 𝜋(𝑡), so we first focus on
those values 𝑡 that map to the same 𝑟 ∈ 𝑈 . Looking at each 𝑟 ∈ 𝜋(𝑈), |𝜋(𝑈)| = |𝑈|
implies that there is a unique 𝑡 ∈ 𝑈 such that 𝜋(𝑡) = 𝑟, and thus perturbing those
𝑥𝑡 satisfying 𝜋(𝑡) = 𝑟 with probability 𝛾 would give exactly a multiplicative factor
of (1 − 𝛾) to the expectation. Since each 𝑟 ∈ 𝜋(𝑈) contributes a factor of (1 − 𝛾),
the final factor thus becomes (1 − 𝛾)|𝜋(𝑈)| = (1 − 𝛾)|𝑈|.

Summing up the above, we have

∣𝐄
𝒯

[𝑓𝐹 ′] − 𝐄
𝒯(𝑆0)

[𝑓𝐹 ′]∣ ≤ 7𝜀1 . (5.21)

This completes the proof.
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5.3.3 Influence based decoding
Suppose we have that for some 𝒮 ⊆ 𝒮1 ∪ 𝒮3, the following term is large

∣𝐄
𝒯′

[ ∏
𝑆∈𝒮

𝑓 (𝑆)(𝑥(𝑆))]∣ > 𝜀1 , (5.22)

then for at least an 𝜀1/2 fraction of all possible edge samplings, we have

∣𝐄
𝒯′

[ ∏
𝑆∈𝒮

𝑓 (𝑆)(𝑥(𝑆))]∣ > 𝜀1/2 . (5.23)

In the rest of the proof, we focus on samplings of edges where (5.23) holds. We
show how to extract a labeling for these edges.

Observe that after we fixed the edges, which function we query only depends on
the layer of the query, so for the rest of this section, let 𝑓𝑙 be the function on layer
𝑙. Also recall that 𝑚(𝑆) = max 𝑆 is the layer query 𝑥(𝑆) is in, and thus in the PCP
query 𝑥(𝑆) goes to function 𝑓𝑚(𝑆). Let 𝑙𝑚 = max𝑆∈𝒮 𝑚(𝑆) be the maximum layer
among queries that appears in 𝒮.

For 𝑙 ∈ [𝑘], denote the queries that appear on layer 𝑙 as ℒ𝑙 ∶= {𝑆 ∈ 𝒮1 ∪ 𝒮3 ∣
max 𝑆 = 𝑙}, and let ℒ≤𝑙 ∶= ∪𝑙′≤𝑙ℒ𝑙′ , and similarly define ℒ<𝑙. We need the
following observation on independence between queries.

Claim 5.14. For any 𝑙 ∈ [𝑘] and 𝑆0 ∈ ℒ𝑙, 𝑥(𝑆0) and {𝑥(𝑆)}𝑆∈ℒ<𝑙
are independent

under both 𝒯 and 𝒯′.

Proof. We first consider 𝒯. We can write 𝑥(𝑆0) = 𝑥𝑒 ⋅𝑥({𝑙}), where 𝑥({𝑙}) is a uniform
random string, “⋅” denotes the elementwise product, and 𝑥𝑒 depends on: (1) 𝑆0, (2)
{𝑥(𝑆)}𝑆∈ℒ<𝑙

, (3) the choice of the locations 𝑁𝑟 for 𝑟 ∈ 𝐿𝑘−1, and (4) the decision
whether the bits in query 𝑥(𝑁𝑟) are resampled. Observe that 𝑥({𝑙}) is independent of
{𝑥(𝑆)}𝑆∈ℒ<𝑙

, the 𝑁𝑟, and whether the bits are resampled, thus its marginal is still
uniform no matter how we fix everything else, and so is the marginal of 𝑥(𝑆0). This
implies that 𝑥(𝑆0) is independent of everything else and in particular {𝑥(𝑆)}𝑆∈ℒ<𝑙

.
For 𝒯′, note that the additional noise is applied independently to each bit, and

we can use a similar argument as above to show that the marginal of 𝑥(𝑆0) is always
uniform, no matter how we fix the other parameters.

We rewrite the left hand side of (5.23) as

𝐄
𝒯′

[ ∏
𝑆∈𝒮

𝑓𝑚(𝑆)(𝑥(𝑆))] = 𝐄
𝒯′

⎡⎢
⎣

∏
𝑙∈[𝑘]

∏
𝑆∈ℒ𝑙∩𝒮

𝑓𝑙(𝑥(𝑆))⎤⎥
⎦

.

By our choice of permutation and Lemma 5.10, there exists 𝑙0 and 𝑗0 such that

∣{𝑆 ∈ ℒ𝑙0
∩ 𝒮 ∣ 𝑆 ∋ 𝑗0}∣ is odd .
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Then flipping 𝑥({𝑗0}) while leaving all other 𝑥({𝑗′}) unchanged changes the sign of
the following

∏
𝑆∈ℒ𝑙0 ∩𝒮

𝑓𝑙0
(𝑥(𝑆)) ,

and since the marginal of 𝑥({𝑗0}) is uniform and all functions are folded, we have

𝐄
𝒯′

⎡⎢
⎣

∏
𝑆∈ℒ𝑙0 ∩𝒮

𝑓𝑙0
(𝑥(𝑆))⎤⎥

⎦
= 0 .

To complete the proof of soundness, we show that if

∣𝐄
𝒯′

[ ∏
𝑆∈𝒮

𝑓𝑚(𝑆)(𝑥(𝑆))]∣ = ∣𝐄
𝒯′

⎡⎢
⎣

∏
𝑙∈[𝑘]

∏
𝑆∈ℒ𝑙∩𝒮

𝑓𝑙(𝑥(𝑆))⎤⎥
⎦

∣

= ∣𝐄
𝒯′

⎡⎢
⎣

∏
𝑙∈[𝑘]

∏
𝑆∈ℒ𝑙∩𝒮

𝑓𝑙(𝑥(𝑆))⎤⎥
⎦

− ∏
𝑙∈[𝑘]

𝐄
𝒯′

[ ∏
𝑆∈ℒ𝑙∩𝒮

𝑓𝑙(𝑥(𝑆))]∣ > 𝜀1/2 , (5.24)

then there exists two layers 1 ≤ 𝑙 < 𝑙𝑚 ≤ 𝑘 such that

∑
𝑟𝑙∈𝐿𝑘−𝑙×𝑅𝑙−1

𝑟𝑚∈𝐿𝑘−𝑙𝑚 ×𝑅𝑙𝑚−1

𝜋𝑙𝑚→1(𝑟𝑚)=𝜋𝑙→1(𝑟𝑙)

Inf(1−𝛾)
𝑟𝑙

(𝑓𝑙) Inf(1−𝛾)
𝑟𝑚

(𝑓𝑙𝑚
) > 𝜀2

1
4𝑍 , (5.25)

where 𝑍 = 𝑍(𝑘, 𝛾) ∶= 24𝑘3𝑘9𝛾−1. This enables us to define a good labeling as
the following: choose 𝑟𝑙 with probability Inf(1−𝛾)

𝑟𝑙
(𝑓𝑙)/ Inf(1−𝛾)(𝑓𝑙), and similarly

choose 𝑟𝑚 with probability Inf(1−𝛾)
𝑟𝑚

(𝑓𝑙𝑚
)/ Inf(1−𝛾)(𝑓𝑙𝑚

), then the probability that
the labeling weakly satisfies the edge is

∑
𝑟𝑙∈𝐿𝑘−𝑙×𝑅𝑙−1

𝑟𝑚∈𝐿𝑘−𝑙𝑚 ×𝑅𝑙𝑚−1

𝜋𝑙𝑚→1(𝑟𝑚)=𝜋𝑙→1(𝑟𝑙)

Inf(1−𝛾)
𝑟𝑙

(𝑓𝑙)
Inf(1−𝛾)(𝑓𝑙)

Inf(1−𝛾)
𝑟𝑚

(𝑓𝑙𝑚
)

Inf(1−𝛾)(𝑓𝑙𝑚
)

> 𝛾2 ∑
𝑟𝑙∈𝐿𝑘−𝑙×𝑅𝑙−1

𝑟𝑚∈𝐿𝑘−𝑙𝑚 ×𝑅𝑙𝑚−1

𝜋𝑙𝑚→1(𝑟𝑚)=𝜋𝑙→1(𝑟𝑙)

Inf(1−𝛾)
𝑟𝑙

(𝑓𝑙) Inf(1−𝛾)
𝑟𝑚

(𝑓𝑙𝑚
) ≥ 𝛾2𝜀2

1
4𝑍 .

This holds for at least 𝜀1/2 fraction of choices of edges, thus the expected value
achieved by the above random labeling procedure is at least 𝛾2𝜀3

1/8𝑍, a value
depending only on 𝑘 and 𝜀.
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The key step to proving (5.24) is to bound the following difference

∣𝐄
𝒯′

[ ∏
𝑆∈𝒮

𝑓𝑚(𝑆)(𝑥(𝑆))] − 𝐄
𝒯′

[ ∏
𝑙<𝑙𝑚

∏
𝑆∈ℒ𝑙∩𝒮

𝑓𝑙(𝑥(𝑆))] 𝐄
𝒯′

⎡⎢
⎣

∏
𝑆∈ℒ𝑙𝑚 ∩𝒮

𝑓𝑙𝑚
(𝑥(𝑆))⎤⎥

⎦
∣ ,

(5.26)
where we recall that 𝑙𝑚 is the highest layer of queries involved in 𝒮. We can
iteratively apply the bound on (5.26) to get (5.24). In order to establish (5.26), we
use an invariance-type result from [104].

Theorem 5.15 ([104]). Consider functions

{𝑓 (𝑡) ∈ 𝐿∞(Ω𝑛
𝑡 )}𝑡∈[𝑑] on a probability space 𝒫 = (

𝑑
∏
𝑡=1

Ω𝑡, 𝑃)
⊗𝑛

and a set 𝑀 ⊊ [𝑑]. Furthermore, let 𝒞 be the collection of minimal sets 𝐶 ⊆ [𝑑],
𝐶 ⊈ 𝑀 , such that the spaces {Ω𝑡}𝑡∈𝐶 are dependent. Then

∣𝐄 [∏ 𝑓 (𝑡)] − ∏
𝑡∉𝑀

𝐄[𝑓 (𝑡)] 𝐄 [ ∏
𝑡∈𝑀

𝑓 (𝑡)]∣

≤ 22𝑑 max
𝐶∈𝒞

⎛⎜
⎝

√min
𝑟∈𝐶

Inf(𝑓 (𝑟)) ∑
𝑖

∏
𝑡∈𝐶−{𝑟}

Inf𝑖(𝑓 (𝑡)) ∏
𝑡∉𝐶

∥𝑓 (𝑡)∥∞
⎞⎟
⎠

.

To apply the above theorem, we first combine all functions that are not in the
highest layer. Let

𝑄 = ∏
𝑆∈𝒮∩ℒ<𝑙𝑚

𝑋(𝑆) ,

and 𝑞 ∈ 𝑄 simply be concatenation of {𝑥(𝑆)}𝑆∈𝒮∩ℒ<𝑙𝑚
. Define the combined func-

tion
𝐹 = ∏

𝑆∈𝒮∩ℒ<𝑙𝑚

𝑓𝑚(𝑆) ,

and the noisy version
𝐹 ′ = ∏

𝑆∈𝒮∩ℒ<𝑙𝑚

𝑇1−𝛾𝑓𝑚(𝑆) .

We still have by Claim 5.14 that 𝑄 and 𝑋(𝑆0) are independent for all 𝑆0 ∈ ℒ𝑙𝑚
.

Then the first term in (5.26) becomes

𝐄
𝒯′

[ ∏
𝑆∈𝒮

𝑓𝑚(𝑆)(𝑥(𝑆))] = 𝐄
𝒯

⎡⎢
⎣

𝐹 ′(𝑞) ∏
𝑆∈𝒮∩ℒ𝑙𝑚

𝑇1−𝛾𝑓𝑙𝑚
(𝑥(𝑆))⎤⎥

⎦
.

Let us set 𝑀 = 𝒮 ∩ ℒ𝑙𝑚
. Consider the sets 𝐶 in Theorem 5.15. Since Theorem

5.15 requires that 𝐶 ⊈ 𝑀 , we have that 𝐶 must include variable 𝑞. Due to the
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independence in Claim 5.14, 𝐶 must also include at least two variables from 𝒮∩ℒ𝑙𝑚
.

Applying Theorem 5.15, we have

∣𝐄
𝒯

⎡⎢
⎣

𝐹 ′(𝑞) ∏
𝑆∈𝒮∩ℒ𝑙𝑚

𝑇1−𝛾𝑓𝑙𝑚
(𝑥(𝑆))⎤⎥

⎦
− 𝐄

𝒯
[𝐹 ′(𝑞)] 𝐄

𝒯
⎡⎢
⎣

∏
𝑆∈𝒮∩ℒ𝑙𝑚

𝑇1−𝛾𝑓𝑙𝑚
(𝑥(𝑆))⎤⎥

⎦
∣

≤ 22𝑘3
√Inf(𝑇1−𝛾𝑓𝑙𝑚

) ∑
𝑟∈𝐿𝑘−1

Inf𝑟(𝐹 ′) Inf𝑟(𝑇1−𝛾𝑓𝑙𝑚
) ,

where 𝐹 ′ and 𝑓𝑙𝑚
are lifted versions of 𝐹 ′ and 𝑓𝑙𝑚

as defined in Definition 2.32.
Using Proposition 2.33, we have

Inf(𝑇1−𝛾𝑓𝑙𝑚
) ≤ Inf(𝑇1−𝛾𝑓𝑙𝑚

) = Inf(1−𝛾)(𝑓𝑙𝑚
) ≤ 𝛾−1 ,

and similarly

Inf𝑟(𝑇1−𝛾𝑓𝑙𝑚
) ≤ ∑

𝑟𝑚∈𝐿𝑘−𝑙𝑚 ×𝑅𝑙𝑚−1

𝜋𝑙𝑚→1(𝑟𝑚)=𝑟

Inf𝑟𝑚
(𝑇1−𝛾𝑓𝑙𝑚

)

= ∑
𝑟𝑚∈𝐿𝑘−𝑙𝑚 ×𝑅𝑙𝑚−1

𝜋𝑙𝑚→1(𝑟𝑚)=𝑟

Inf(1−𝛾)
𝑟𝑚

(𝑓𝑙𝑚
) .

Now we need to relate Inf𝑟(𝐹 ′) with Inf(1−𝛾)
𝑟 (𝑓𝑚(𝑆)). We use the following gener-

alization of Lemma 6.5 from [86].

Lemma 5.16 ([86]). Let (∏𝑚
𝑖=1 Ω𝑛

𝑖 , 𝜇) be correlated probability space, and 𝑓𝑖 ∶
Ω𝑛

𝑖 → [−1, 1] for 𝑖 = 1, … , 𝑚. Then for all 𝑟:

Inf𝑟 (
𝑚
∏
𝑖=1

𝑓𝑖) ≤ 𝑚
𝑚

∑
𝑖=1

Inf𝑟(𝑓𝑖) .

The argument goes exactly the same so we omit the proof here.
Applying Lemma 5.16, we can upper-bound Inf𝑟(𝐹 ′) by the following

Inf𝑟(𝐹 ′) ≤ 𝑘3 ∑
𝑆∈𝒮∩ℒ<𝑙𝑚

Inf𝑟(𝑇1−𝛾𝑓𝑚(𝑆)) ≤ 𝑘6 ∑
𝑙<𝑙𝑚

Inf𝑟(𝑇1−𝛾𝑓𝑙)

≤ 𝑘6 ∑
𝑙<𝑙𝑚

∑
𝑟𝑙∈𝐿𝑘−𝑙×𝑅𝑙−1

𝜋𝑙→1(𝑟𝑙)=𝑟

Inf(1−𝛾)
𝑟𝑙

(𝑓𝑙) ,

where we used Proposition 2.33 to obtain the last inequality.
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Summing up, we have

∣ 𝐄
𝒯

⎡⎢
⎣

𝑇1−𝛾𝐹(𝑞) ∏
𝑆∈𝒮∩ℒ𝑙𝑚

𝑇1−𝛾𝑓𝑙𝑚
(𝑥(𝑆))⎤⎥

⎦
−

𝐄
𝒯

[𝑇1−𝛾𝐹(𝑞)] 𝐄
𝒯

⎡⎢
⎣

∏
𝑆∈𝒮∩ℒ𝑙𝑚

𝑇1−𝛾𝑓𝑙𝑚
(𝑥(𝑆))⎤⎥

⎦
∣ (5.27)

≤ 22𝑘3√√√√√√
⎷

𝑘6𝛾−1 ∑
1≤𝑙<𝑙𝑚

𝑟𝑙∈𝐿𝑘−𝑙×𝑅𝑙−1

𝑟𝑚∈𝐿𝑘−𝑙𝑚 ×𝑅𝑙𝑚−1

𝜋𝑙𝑚→1(𝑟𝑚)=𝜋𝑙→1(𝑟𝑙)

Inf(1−𝛾)
𝑟𝑙

(𝑓𝑙) Inf(1−𝛾)
𝑟𝑚

(𝑓𝑙𝑚
) . (5.28)

Let 𝑍′ = 22𝑘3√𝑘6𝛾−1, applying (5.28) to all layers, we get

∣𝐄
𝒯′

[ ∏
𝑆∈𝒮

𝑓 (𝑆)(𝑥(𝑆))]∣ < 𝑍′ ∑
2≤𝑙𝑚<𝑘

√√√√√√
⎷

∑
1≤𝑙<𝑙𝑚

𝑟𝑙∈𝐿𝑘−𝑙×𝑅𝑙−1

𝑟𝑚∈𝐿𝑘−𝑙𝑚 ×𝑅𝑙𝑚−1

𝜋𝑙𝑚→𝑙(𝑟𝑚)=𝑟𝑙

Inf(1−𝛾)
𝑟𝑙

(𝑓𝑙) Inf(1−𝛾)
𝑟𝑚

(𝑓𝑙𝑚
) .

Thus if the left hand side of the above is larger than 𝜀1/2, then there exists 1 ≤
𝑙 < 𝑙𝑚 ≤ 𝑘 such that

∑
𝑟𝑙∈𝐿𝑘−𝑙×𝑅𝑙−1

𝑟𝑚∈𝐿𝑘−𝑙𝑚 ×𝑅𝑙𝑚−1

𝜋𝑙𝑚→𝑙(𝑟𝑚)=𝑟𝑙

Inf(1−𝛾)
𝑟𝑙

(𝑓𝑙) Inf(1−𝛾)
𝑟𝑚

(𝑓𝑙𝑚
) > (𝜀1/2

𝑘𝑍′ )
2

⋅ 1
𝑘 = 𝜀2

1
4𝑍 .

This completes the proof.
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Chapter 6

An Introduction to Coloring

We now turn to approximating the chromatic number of graphs and hypergraphs.
In this chapter, we review what was known about the complexity of coloring for
graphs and hypergraphs and their relation to Gap-CSP. In Chapter 7, we use the
recent breakthrough result by [24] as discussed in Section 5.1 to get an exponential
improvement in hardness of approximating chromatic number of graphs. Chapter
8 is about inapproximability of hypergraph coloring, where we use some variant of
Gap-CSP as a starting point of our reduction.

An undirected graph 𝐺 = (𝑉 , 𝐸) consists of vertex set 𝑉 and edge set 𝐸 ⊆ (𝑉
2 ).

For some integer 𝑘 ≥ 2, a 𝑘-uniform hypergraph 𝐻 = (𝑉 , 𝐹) consists of vertex set
𝑉 and edge set 𝐹 ⊆ (𝑉

𝑘). Note that 2-uniform hypergraphs are simply ordinary
graphs.

Recall the following definition of independent sets.

Definition 6.1. For a graph 𝐺 = (𝑉 , 𝐸), a set of vertices 𝑆 ⊆ 𝑉 is an independent
set if it does not contain any edge, that is, for all 𝑒 ∈ 𝐸, 𝑒 ⊈ 𝑆.

More generally, for a 𝑘-uniform hypergraph 𝐻 = (𝑉 , 𝐹), a set 𝑆 ⊆ 𝑉 is an
independent set if for all 𝑓 ∈ 𝐸, 𝑓 ⊈ 𝑆.

We use 𝛼(⋅) to denote the fractional size of the maximum cardinality independent
set of a graph or hypergraph, also known as the fractional independence number.

Let 𝑞 ∈ ℕ+, and we define 𝑞-coloring as follows.

Definition 6.2. For a given graph 𝐺 = (𝑉 , 𝐸) (or 𝑘-uniform hypergraph 𝐻 =
(𝑉 , 𝐹)), a 𝑞-coloring is a function 𝜎 ∶ 𝑉 → [𝑞], such that for any 𝑐 ∈ [𝑞], the set
of vertices that are colored with color 𝑐, denoted as 𝜎−1(𝑐) ⊆ 𝑉 , is an independent
set.

The chromatic number 𝜒(⋅) of a graph 𝐺 or hypergraph 𝐻 is the minimum 𝑞
such that a 𝑞-coloring exists for 𝐺 or 𝐻.

Chromatic number and fractional independence number are closely related.

Fact 6.3. For any 𝑘-uniform hypergraph 𝐻, we have 𝜒(𝐻)𝛼(𝐻) ≥ 1.

97
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Coloring a graph or a hypergraph using few colors is a classical combinatorial
optimization problem, and is one of the most well-studied problems in theoretical
computer science. It is also closely related to other problems such as finding maxi-
mum independent sets, PCPs with certain special properties, and also Gap-CSP.
In the following two sections, we present the algorithms and hardness results known
each of them.

6.1 Complexity of Graph Coloring

For a given graph 𝐺, deciding whether it has a 2-coloring is the same as deciding
whether it is a bipartite graph, and can be easily solved in polynomial time. In
general, however, determining the chromatic number of a graph exactly is NP-hard
[39]. However, in many applications, it suffices to find a good enough approxima-
tion. In other words, given a 𝑞-colorable graph, we would like to color it with as
few colors as possible. As in Section 3.1.1, this optimization problem has a natural
variant of promise problem: given graph 𝐺, decide whether 𝜒(𝐺) ≤ 𝑞 or 𝜒(𝐺) > 𝑞′.
Another closely related variant is the promise problem where we need to decide
whether 𝜒(𝐺) ≤ 𝑞 or 𝛼(𝐺) < 1/𝑞′. Note that by Fact 6.3, if 𝛼(𝐺) < 1/𝑞′, then
𝜒(𝐺) > 𝑞′. Therefore if the problem with independent set promise is hard, then so
is the promise chromatic number problem.

For 𝑞 = 3, it is known that coloring 3-colorable graphs with 4 colors is NP-hard,
and for general 𝑞-colorable graphs it is NP-hard to color with 𝑞 + 2⌊𝑞/3⌋ − 1 colors
[66, 45]. For sufficiently large 𝑞, a result by Khot [67] showed that it is NP-hard to
color a 𝑞-colorable graph with 𝑞 1

25 log 𝑞 colors. This was later improved to 2Ω(𝑞1/3)

by Huang [61], and we present this result in Chapter 7.
Assuming a variant of Khot’s 2-to-1 Conjecture, Dinur, Mossel and Regev [32]

proved that it is NP-hard to 𝑞′-color a 𝑞-colorable graph for any 3 ≤ 𝑞 < 𝑞′. The
dependency between the hardness of graph coloring and the parameters of 2-to-1
Label-Cover was made explicit and improved by Dinur and Shinkar [34], who
showed that it is NP-hard to log𝑐 𝑛-color a 4-colorable graph for some constant
𝑐 > 0 assuming the 2-to-1 Conjecture. Guruswami and Sinop [47] proved that
assuming the 2-to-1 Conjecture, it is hard to find an independent set with more
than 𝑂( 𝑛

∆1−𝑐/(𝑘−1) ) vertices in a 𝑘-colorable graph of maximum degree Δ for some
absolute constant 𝑐 ≤ 4.

There have been many works on approximation algorithms as well. Wigderson
[105] gave an algorithm using 𝑂(𝑛1−1/(𝑞−1)) colors. This was improved by Berger
and Rompel [18] to 𝑂 ((𝑛/log 𝑛)1−1/(𝑞−1)) colors. Karger, Motwani and Sudan [63]
used semi-definite programming to achieve �̃�(𝑛1−3/(𝑞+1)), which was adapted in
Blum and Karger [20] to an algorithm that colors a 3-colorable graph with �̃�(𝑛3/14)
colors. For 3-colorable graphs, the best algorithm is by Kawarabayashi and Thorup
[65] which uses 𝑂(𝑛0.19996) colors, based on results by Arora and Chlamtáč [4],
Chlamtáč [27], and the earlier work of Kawarabayashi and Thorup [64].
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As we can see, there is still a huge gap between the best approximation guarantee
and the best hardness result.

6.2 Complexity of Hypergraph Coloring

Our understanding of hypergraph coloring is much better. For 𝑘 ≥ 3, even deter-
mining whether a 𝑘-uniform hypergraph has a 2-coloring is NP-hard.

In terms of approximation algorithms, the best algorithm for 2-colorable 3-
uniform hypergraphs still requires 𝑛Ω(1) colors [82, 1, 26].

From the hardness side, the first super-constant hardness result was proved
in [44]. They proved that for 4-uniform 2-colorable hypergraphs, finding a color-
ing with any constant number of colors is NP-hard, and finding a coloring with
𝑂(log log 𝑛/ log log log 𝑛) colors is quasi-NP-hard. For 3-uniform 2-colorable hy-
pergraphs, a similar constant gap NP-hardness was proved in [33]. Khot [68]
proved that coloring 3-colorable 3-uniform hypergraphs with any constant num-
ber of colors is hard, and for 𝑞-colorable 4-uniform hypergraphs, coloring with
logΩ(𝑞) 𝑛 colors is quasi-NP-hard for 𝑞 ≥ 7. The analysis in [44] was improved
by Holmerin, who proved that even finding an independent set of fractional size
Ω(log log log 𝑛/ log log 𝑛) is quasi-NP-hard [58]. The construction was further im-
proved recently by Saket [95], where it was shown that it is quasi-NP-hard to
find independent set of size 𝑛/ logΩ(1) 𝑛 in 2-colorable 4-uniform hypergraphs [95].
There has also been work on the hardness of finding independent sets in almost
2-colorable hypergraphs — hypergraphs that becomes 2-colorable after removing
a small fraction of vertices. Much stronger result is known, albeit at the cost of
imperfect completeness. We refer to [78] for more details.

Recently, the first super-polylogarithmic hardness result was proved in [42],
showing hardness for coloring 2-colorable 8-uniform hypergraphs with 22Ω(√log log 𝑛)

colors, using Low-Degree-Long-Code proposed in [13]. The analyses of Low-
Degree-Long-Code in [42] employ techniques for testing Reed-Muller codes de-
veloped in [29], which in turn uses applies tools for Reed-Muller code testing in the
work of Bhattacharyya, Kopparty, Schoenebeck, Sudan and Zuckerman[19].

Using a very different approach, Khot and Saket gave another exponential im-
provement in [77], showing a quasi-NP-hardness for coloring 2-colorable 12-uniform
hypergraphs with exp(logΩ(1) 𝑛) colors. The analysis was simplified by Varma in
[103] using ideas from [42]. The work in Chapter 8 is based on these recent devel-
opments, and we elaborate more on these results there.





Chapter 7

Hardness of Approximating
Chromatic Number

The result we present in this chapter is based on, and improves the hardness by
Khot [67], where he proved that for sufficiently large 𝑞, coloring a 𝑞-colorable graph
with 𝑞 1

25 log 𝑞 colors is NP-hard. Khot’s hardness result can be derived using the
Gap-CSP results either from Håstad and Khot [55] or Samorodnitsky and Tre-
visan [96]. We can view both [55] and [96] as showing approximation resistance for
a family of Boolean predicates that have very few accepting inputs. For a more
extensive discussion about results regarding hardness of Gap-CSP, difference be-
tween Gap1,𝑠-CSP and Gap1−𝜀,𝑠-CSP, we refer to Chapter 5. It is noted in Khot
[67] that having perfect completeness is not necessary but makes the reduction for
coloring easier.

There is a canonical reduction that converts a Gap1,𝑠-𝑘-CSP problem (or
Gap1−𝜀,𝑠-𝑘-CSP) into a promise independent set problem where one is asked to
decide whether a graph has an independent set of fractional size at least roughly
1/𝑘 or that it has no independent set of fractional size larger than 𝑘/𝑠. This does
not immediately give a hardness for approximating chromatic number, but it serves
as the basis for the reduction in [67], using a Gap-𝑘-CSP hardness result from [55].

In Chapter 5, we discussed some recent improvements of Gap-𝑘-CSP hard-
ness, and it is a natural question to ask whether these improvements lead to bet-
ter inapproximability result for approximating chromatic number. In particular,
the Hadamard𝐾 predicate, proved to be approximation resistance in [24], has
density Θ(𝐾)/2𝐾, much lower than the predicate used in [55], which has density
2𝑂(𝐾1/2)/2𝐾.

In [24], Chan applied his Gap-𝑘-CSP hardness result and showed that for any
𝐾 ≥ 3, there is 𝜈 = 𝑜(1) such that given a graph with an induced 𝐾-colorable
subgraph of fractional size 1−𝜈, it is NP-hard to find an independent set of fractional
size 1/2𝐾/2 + 𝜈. Although this gives a larger gap than Khot [67], the result lacks
“perfect completeness” and thus is not comparable with Khot [67]. We refer to
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[31, 76, 24] for additional discussions on AlmostColoring.
We show improved hardness of approximating chromatic number using the

Chan’s construction.

Theorem 7.1. For all sufficiently large 𝐾, it is NP-hard to color a 𝐾-colorable
graph with 2Ω(𝐾1/3) colors. Moreover, this hardness result holds for graphs that have
degree bounded by 𝐾2𝑂(𝐾1/3).

Stated in terms of degree, Theorem 7.1 says that there exists some constant 𝑐,
such that for all large enough Δ, it is NP-hard to color a (log Δ)3-colorable graph
of maximum degree bounded by Δ with 𝑂 (Δ𝑐) colors.

Our approach follows that of Khot [67]. The main issue is that Khot’s technique
is for Long-Code-based reductions, and we need to work on adapting his tech-
nique so that it works with the new construction by Chan [24], which gives much
better dependency between soundness and the arity of Gap-CSP. This is also the
main source of the improvement in Theorem 7.1. This reduction alone will give us
graphs with degree at least doubly exponential in 𝐾. To get a tighter dependency
on degree, we apply a technique in Trevisan [102] to sparsify the output of the
reduction.

7.1 Main Theorem

In this section, we prove Theorem 7.1 — for sufficiently large 𝐾, it is NP-hard
to color a 𝐾-colorable graph with less than 2Ω(𝐾1/3) colors. For convenience of
notation, we in fact prove a gap of 𝑂(𝐾3) versus 2Ω(𝐾).

The overall approach follows that in Khot [67]. We start by describing the
FGLSS graph [37] of Chan’s PCP as summarized in Theorem 5.4, with the following
parameters: let 𝜀 > 0 be some small constant, 𝛿 = 𝜀 ⋅ 2−𝐾, and 𝜂 = 𝜀/𝐾2. By The-
orem 5.4, we require the soundness of Label Cover to be 𝜎 = (𝛿/poly(𝐾/𝜂))𝑂(1) =
2−Ω(𝐾). This means that the size of the label 𝐿 = poly(1/𝜎) = exp(Θ(𝐾)).

The vertices in the FGLSS graph are function queries and their corresponding
accepting configurations, denoted as (𝐟𝐯, 𝐪, 𝐳). The weight of the vertex is the
probability that query (𝐟𝐯, 𝐪) is picked. The total weight of the graph is therefore
𝐾 + 1, the number of accepting assignments of Hadamard𝐾. Two vertices are
connected if they are clearly inconsistent (returning different answers for the same
query to the same function). An independent set in the graph corresponds to a
strategy / set of functions, and its weight is the acceptance probability of such
strategy. Note that if the maximum weight independent set of the FGLSS graph
has weight 𝑤, then we need at least (𝐾 +1)/𝑤 colors to color the whole graph since
vertices having the same color must form an independent set.

To use the FGLSS graph for coloring results, we also need to show that if a
PCP has acceptance probability 1 − 𝜀, we can color the FGLSS graph with a small
number of colors. Note that in this case, we know that there is an independent
set of weight 1 − 𝜀 in the FGLSS graph, corresponding to a correct proof. Khot’s
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idea in [67] is to modify the definition of the PCP so that the correct proofs are
parametrized by some global parameter 𝛼 ∈ {0, 1}𝑡. This gives us 2𝑡 different
correct proofs and thus 2𝑡 independent sets of weight 1 − 𝜀, and by choosing the
right 𝑡, we expect those independent sets cover most of the FGLSS graph of the
modified PCP and thus gives a coloring of at most 2𝑡 colors.

Formally, we modify the construction in Section 5.1 so that the functions in the
proof become 𝐟𝐯𝑖

∶ ({−1, 1}𝑅⋅2𝑡)𝑖−1 × {−1, 1}𝐿⋅2𝑡 × ({−1, 1}𝑅⋅2𝑡)𝐾−𝑖 → {−1, 1}.
Alternatively, we can think of this as modifying Label-Cover by appending a 𝑡-bit
binary string to all the labels and defining the new projection in the Label-Cover
instance as 𝜋′

𝑒(𝑟 ∘𝛼) = 𝜋𝑒(𝑟) ∘𝛼 for 𝑟 ∈ 𝑅 and 𝛼 ∈ {0, 1}𝑡, where “∘” denotes string
concatenation. The value of this new Label-Cover instance is exactly the same
as the original setting. Consider the FGLSS graph in this new setting. Soundness
is straightforward. If the new proof makes the verifier accept with probability at
least (𝐾 + 1)/2𝐾 + 2𝛿, then the value of the new Label-Cover is at least 𝜎 and
hence the original instance also has value at least 𝜎.

Now let us consider the case of completeness. If the original Label-Cover
instance has value 1, then extending a valid labeling with any 𝛼 ∈ {0, 1}𝑡 gives us
a valid labeling for the modified instance, which corresponds to an independent set
of weight at least 1 − 𝜀 in the modified FGLSS graph. We need to show that the
2𝑡 independent sets corresponding to different 𝛼 ∈ {0, 1}𝑡 cover almost all of the
FGLSS graph of the modified PCP. In fact, we can efficiently identify a small subset
of the vertices that contains all vertices that are not covered by any independent
sets of the above form and remove them from the FGLSS graph.

To this end, we follow Khot’s notation and introduce the following definition
characterizing whether we can cover certain vertex with independent sets.

Definition 7.2 (Good Queries). Let 𝐥 = {(𝑙𝑖, 𝑟𝑖)}𝐾
𝑖=1 be any 𝐾 pairs of labelings,

where 𝑙𝑖 ∈ [𝐿], 𝑟𝑖 ∈ [𝑅] for all 𝑖 ∈ [𝐾]. Define the 𝑖-th mixed labeling

𝐦𝑖(𝐥) = (𝑟1, … , 𝑟𝑖−1, 𝑙𝑖, 𝑟𝑖+1, … , 𝑟𝐾) .
Let 𝐟𝑖,𝐥 be the product of Long-Code encodings of the labelings in 𝐦𝑖. Denote by
𝐥𝛼 ∶= {(𝑙𝑖 ∘ 𝛼, 𝑟𝑖 ∘ 𝛼)}𝐾

𝑖=1 the labelings extended by 𝛼. Define 𝐟𝛼
𝑖,𝐥 similarly.

A set of queries 𝐪 = (𝑞1, … , 𝑞𝐾) is good if for any 𝐾 tuples of labelings 𝐥 and
any accepting assignment 𝐳 = (𝑧1, … , 𝑧𝐾) of Hadamard𝐾, there exists a global
extension 𝛼, such that 𝐟𝛼

𝑖,𝐥(𝑞𝑖) = 𝑧𝑖 for all 𝑖 ∈ [𝐾].
Remark. Given that the vertices in the FGLSS graph correspond to combinations
of queries and answers to the queries, it might seem odd that we are defining the
notion of good for queries rather than queries together with answer to the queries.
This is mostly for the purpose of making Lemma 7.3 easier to prove. Moreover, we
lose at most a factor Θ(𝐾) in the soundness from this, which is negligible since the
soundness we are aiming for is exp(−Θ(𝐾)).

To verify if a set of queries is good, we only need to check all 𝐾 tuples of
labelings and all accepting assignments of the Hadamard predicate Hadamard𝐾.
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Those are all constants depending only on 𝐾 (and 𝜀). The following lemma shows
that the fraction of bad queries is small.

Lemma 7.3. Let 𝑡 be such that 2𝑡 = 𝐶 ⋅ 𝐾3 for some large constant 𝐶. For large
enough 𝐾, at most a weighted fraction of exp(−Θ(𝐾)) of the queries is not good.

Before proving the lemma, let us see how it leads to our main theorem.
Remove the vertices in the FGLSS graph that correspond to queries that are not

good. By Lemma 7.3, the fraction of vertices removed is bounded by exp(−𝑂(𝐾)).
In the soundness case coloring the FGLSS graph still needs at least (𝐾 + 1)(1 −
exp(−Θ(𝐾)))/2−𝐾 = 2Ω(𝐾) colors. In the completeness case, the Label-Cover
instance has value 1. Fix a labeling that satisfies all the edges. For a vertex
(𝐟𝐯, 𝐪, 𝐱) in the modified FGLSS graph, let 𝐥𝐯 be the set of 𝐾 tuples of labelings
of the sampled vertices. Each 𝛼 ∈ {0, 1}𝑡 is associated with an independent set
consisting of vertices of the form (𝐟𝐯, 𝐪, 𝐳), where 𝑧𝑖 = 𝐟𝛼

𝑖,𝐥𝐯
(𝑞𝑖) for all 𝑖 ∈ [𝐾].

Consider any vertex (𝐟𝐯, 𝐪, 𝐱) in the modified FGLSS graph. We know that 𝐪
is good so by definition there exists 𝛼0 ∈ {0, 1}𝑡 such that 𝐟𝛼0

𝑖,𝐥𝐯
(𝑞𝑖) = 𝑥𝑖 for all

𝑖 ∈ [𝐾]. Hence, it is covered by the independent set associated with 𝛼0. Therefore
the modified FGLSS graph can be colored with 2𝑡 = 𝑂(𝐾3) colors.

Proof of Lemma 7.3. For query 𝐪, let 𝑄(𝐪) be the event that 𝐪 is not good in the
sense of Definition 7.2: there exists some labeling 𝐥 and some accepting assignment
𝐳, such that for any 𝛼, there exists 𝑖 ∈ [𝐾], 𝐟𝛼

𝑖,𝐥(𝑞𝑖) ≠ 𝑧𝑖. It suffices to bound
Pr𝐪 [𝑄(𝐪)].

Fix some 𝐾 tuples of labeling 𝐥 of the label cover instance and some accepting
assignment 𝐳. Consider 𝛼 ∈ {0, 1}𝑡. Over the queries sampled, the probability that
𝐟𝛼
𝑖,𝐥(𝑞𝑖) = 𝑧𝑖 for all 𝑖 ∈ [𝐾] is 1/(𝐾 + 1) before adding noise. To estimate the effect

of noise, note that there are 𝐾 functions, each being a product of 𝐾 long codes,
therefore the answers {𝐟𝛼

𝑖,𝐥(𝑞𝑖)}𝑖∈[𝐾] depends on 𝐾2 bits. If none of these 𝐾2 bits
are corrupted, then the answer is exactly 𝐳. This gives an overall probability of
Θ(1/𝐾 ⋅ (1 − 𝜂)𝐾2) = Θ(𝑒−𝜂𝐾2/𝐾) = Θ(1/𝐾). The contribution of probability
from other sources is negligible.

Note that for different extension 𝛼, the bits that 𝐟𝛼
𝑖,𝐥 reads from 𝐪 are completely

independent, so we have

Pr
𝐪

[∀𝛼, ∃𝑖, 𝐟𝛼
𝑖,𝐥(𝑞𝑖) ≠ 𝑧𝑖] = (1 − Θ(1/𝐾))2𝑡 = exp(−Θ(2𝑡/𝐾)) .

Picking large enough constant 𝐶 and taking union bound over all possible la-
belings and accepting configurations, we get that the weighted fraction of 𝐪 that
are bad is

Pr
𝐪

[𝑄(𝐪)] ≤ 𝑅𝐾−1 ⋅ 𝐿 ⋅ (𝐾 + 1) exp(−Θ(2𝑡/𝐾)) = exp(−Θ(𝐾)) .
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Degree Reduction. Now let us consider the degree of the graph produced
by the above reduction. Consider a vertex (𝐟𝐯, 𝐪, 𝐳). Fix some 𝑖 ∈ [𝐾]. Let 𝐳′ be
some accepting assignment of Hadamard𝐾 with 𝑧′

𝑖 ≠ 𝑧𝑖. We first estimate the
number of queries 𝐪′ with 𝑞′

𝑖 = 𝑞𝑖. Let us consider the 𝑖-th test distribution 𝒯𝑖,𝑒𝑖
,

where 𝑒𝑖 is the edge sampled for the 𝑖-th test, and denote the constraint on 𝑒𝑖 by
𝜋. Recall that for each 𝑙 ∈ [𝐿] and 𝑟 ∈ 𝜋−1(𝑙) ⊆ [𝑅], the bits {𝑞′

𝑗,𝑟}𝑗≠𝑖 are sampled
by uniformly picking an accepting assignment 𝐱 of Hadamard𝐾 conditioned on
𝑥𝑖 = 𝑞′

𝑖,𝑙. Thus there are at least ((𝐾 + 1)/2)|𝑅| = 2exp(Ω(𝐾)) possible choices of
𝐪′. Note that for any such 𝐪′, there is an edge between (𝐟𝐯, 𝐪′, 𝐳′) and (𝐟𝐯, 𝐪, 𝐳).
Therefore the degree of the graph produced by the above reduction is at least
double exponential in 𝐾. We now use the approach in Clementi and Trevisan [28]
and Trevisan [102] to reduce the degree to 𝑂(𝐾32𝐾).

For ease of presentation, we look at the argument on the original FGLSS graph
without removing bad queries. The same argument applies to the graph with bad
queries removed because removing vertices from the graph does not increase the
maximum degree, and, as seen above, does not significantly affect the soundness
and completeness of the reduction.

Denote the FGLSS graph corresponding to the PCP described in Section 5.1
as 𝐺. We first turn 𝐺 into an unweighted graph. Let 𝑤𝑚𝑖𝑛 be the minimum
weight of vertices in 𝐺, and 𝜆 be the ratio between the minimum and maximum
weight of vertices in 𝐺. Since in the test distribution in Section 5.1 edges of the
Label-Cover instance are sampled uniformly, we have that 𝜆 depends only on
𝐾. Let 𝜉 be some granularity parameter. We obtain an unweighted version 𝐺′ of
𝐺 by duplicating vertices — we make ⌊𝑤/𝑤𝑚𝑖𝑛 ⋅ 1/𝜉⌋ ≤ 1/𝜆𝜉 vertices for a vertex
of weight 𝑤, and connect the duplicated vertices with all the neighbors. This step
blows up the size of the graph by 𝑂(1/𝜆2𝜉2), and the fractional size of the maximum
independent set in 𝐺′ is within a multiplicative factor of 𝑂(𝜉) from that of 𝐺 due
to error introduced by ⌊⋅⌋ when duplicating vertices.

As observed in [102], the graph 𝐺′ is a union of bipartite complete subgraphs.
More precisely, for every index 𝑖 and 𝑖-th query (𝐟𝐯𝑖

, 𝐪𝑖), there is a complete bipar-
tite graph between configurations that answer “1” for query (𝐟𝐯𝑖

, 𝐪𝑖) — denoted
as 𝑍𝐟𝐯𝑖 ,𝐪𝑖

— and configurations that answer “−1” for the same query — denoted
as 𝑂𝐟𝐯𝑖 ,𝐪𝑖

. By the way we construct the FGLSS graph, it follows that these com-
plete bipartite subgraphs cover the whole 𝐺′. Let 𝑙 be the maximum size of such
sets. We claim that 𝑙 depends only on 𝐾, 𝜆 and 𝜉. To estimate 𝑙, consider how
many tuples (𝐟𝐯, 𝐪, 𝐳) can include (𝐟𝐯𝑖

, 𝐪𝑖) on the 𝑖-th position. By Theorem 3.10,
the degree of the Label-Cover graph is poly(1/𝜎) = exp(Θ(𝐾)). Since there
are 𝐾 vertices in 𝐯𝑖, the 𝐟𝐯𝑖

coordinate has at most exp(Θ(𝐾2)) neighbors. For
𝐪𝑖, consider an edge 𝑒 the bits in 𝐪𝑖 that are mapped to the same label 𝑙 ∈ [𝐿]
according to mapping 𝜋𝑒 (or a single bit if 𝑒 is the 𝑖-th edge). There are exactly
(𝐾 + 1)/2 possible queries. Enumerating over all labels and sampled edges, this
gives an upper-bound of 2exp(Θ(𝐾)). Since each of them can be duplicated by at
most 1/𝜆𝜉 times, we have 𝑙 = 2exp(Θ(𝐾))/𝜆𝜉. Also since for each input bit to the
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predicate Hadamard𝐾, exactly half of the accepting assignments of Hadamard𝐾
set that bit to 1 and exactly half to −1 — a property also known as Hadamard𝐾
being balanced — we have |𝑍𝐟𝐯𝑖 ,𝐪𝑖

| = |𝑂𝐟𝐯𝑖 ,𝐪𝑖
|.

We now replace the above bipartite complete graphs in 𝐺′ with the following
construction on the same set of vertices 𝑍𝐟𝐟𝑖 ,𝐪𝑖

and 𝑂𝐟𝐟𝑖 ,𝐪𝑖
.

Proposition 7.4 ([102]). For every 𝜁 > 0 and 𝑏 ≥ 1, there is a bipartite graph
([𝑏], [𝑏], 𝐸) of degree at most 𝑑 = 3𝜁−1 log(𝜁−1) such that for any 𝐴, 𝐵 ⊆ [𝑏],
|𝐴| ≥ ⌊𝜁𝑏⌋, |𝐵| ≥ ⌊𝜁𝑏⌋, we have (𝐴 × 𝐵) ∩ 𝐸 ≠ ∅.

Trevisan [102] called such graphs (𝑏, 𝜁)-dispersers, and he used a probabilistic
argument to prove the above proposition. As argued above, 𝑙 is a constant depend-
ing only on 𝐾, thus we can find the desired disperser by exhaustive search. An
important property of bipartite dispersers is that given an independent set 𝐼 of a
(𝑏, 𝜁)-disperser, we have that either |𝐼 ∩ 𝐴| ≤ 𝜁𝑏 or |𝐼 ∩ 𝐵| ≤ 𝜁𝑏.

Denote the replaced graph by 𝐺″. To understand how much the above re-
placement step increases the size of the maximum independent set, note that for
any independent set in a disperser, we can get an independent set in the com-
plete bipartite graph by discarding all vertices on one side, which, if we choose to
discard the smaller side, accounts for at most a 𝜁 fraction of the vertices on one
side of the bipartite graph. Also, each vertex in the FGLSS graph is involved in
at most 𝐾 complete bipartite graphs of this kind, thus the size of the indepen-
dent set in the new graph is at most an additive 𝐾𝜁 larger than 𝐺′. By choosing
𝜁 = 𝑂(2−𝐾/𝐾), 𝜉 = 𝑂(2−𝐾), we have that in the soundness case the maximum
independent set 𝐺′ has size 𝑂(2−𝐾). The maximum degree of 𝐺″ is bounded by
𝐾 ⋅ 3𝜁−1 log(𝜁−1) = 𝑂(𝐾32𝐾).



Chapter 8

Superposition Complexity and
Hypergraph Coloring

We now study the hardness of coloring 2-colorable 8-uniform hypergraphs. The
hardness result we get here also starts from our study of CSP hardness, although it
follows a different route compared to the one in Chapter 7. In particular, we study
the notion of superposition complexity for CSPs.

8.1 Overview of the Reduction

We start by describing the PCP reduction of proving hypergraph coloring hardness
used in many previous works such as those mentioned in Section 6.2. Most of these
results show hardness of finding an independent set of large fractional size in hyper-
graphs with small chromatic number. We can view the output of these reductions
as NotAllEqual𝑘 CSP instances. The variables correspond to the vertices of a
hypergraph, and the NotAllEqual𝑘 constraints correspond to the hyperedges.
Note that for hypergraph coloring results, all variables appear positively in such
instances and no negations are allowed. An assignment that satisfies all the No-
tAllEqual𝑘 constraints thus gives a perfect 2-coloring for the hypergraph. In the
other direction, a set of vertices in the hypergraph naturally corresponds to a {0, 1}
assignment to the variables in the NotAllEqual𝑘 instance, and the vertices form
an independent set if for all constraints in the NotAllEqual𝑘 instance, there is
at least 1 variable that is assigned 0.

The overall structure of these reductions are similar to the ones we have seen in
Part II. The starting point of the reduction is usually some Label-Cover hardness.
We then encode the supposed labeling for the Label-Cover instance with some
coding scheme, and design a PCP to test the consistency of the labeling.

The classical choice of encoding is the Long-Code, which encodes 𝑚 bits of
information with 22𝑚 bits. This is the encoding we use in all previous chapters.
The resulting instance has size 𝑛𝑂(𝑟)22𝑟 , where poly(𝑛) is the size of the particular
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Label-Cover instance we use, and 𝑟 is the the number of bits we need to encode
the labels of the Label-Cover instance. This is not a problem in the previous
chapters, because for any pre-specified soundness parameter 𝜀 — which we think of
as constant — the corresponding 𝑟 = 𝑂(log(1/𝜀)) is also a constant, and therefore
the whole reduction has polynomial size. However, in the case of hypergraph color-
ing, the soundness we are aiming for grows with the size of the graph. For instance,
if in the soundness case we want to show that there is no independent set of frac-
tional size 𝛿, then we need 𝑟 = 𝑂(log(1/𝛿)), and reductions based on Long-Code
will produce a hypergraph whose vertex set has size at least 2poly(1/𝛿). This huge
increase in size makes it impossible to prove hardness results better than polylog 𝑛
via the Label-Cover plus Long-Code approach.

A much more efficient encoding is the Hadamard-Code, which only uses 2𝑚

bits to encode 𝑚 bits of information. However, the disadvantage of the Hadamard-
Code is that one can only enforce linear constraints on the codewords, which means
that we can only start from hard problems involving only linear constraints, and
as a result, we lose perfect completeness and can only prove results about almost
coloring.

The Low-Degree-Long-Code proposed in [13] lies somewhere between Long-
Code and Hadamard-Code. See Section 2.5 for a review of these codes. Dinur
and Guruswami [29] obtained hardness result for a variant of hypergraph coloring
based on Low-Degree-Long-Code, and the techniques were soon adapted in [42]
to get a hardness result of 22Ω(√log log 𝑛) .

Khot and Saket [77] proved a hardness result of 2logΩ(1) 𝑛 by using Quadratic-
Code, which is the same as Low-Degree-Long-Code with 𝑑 = 2. Their con-
struction, however, is completely different from that in [42].

One can view the Quadratic-Code used in [77] as the Hadamard-Code
encoding of matrix 𝑀 that is symmetric and has rank 1, that is, there exists some
𝑢 ∈ 𝔽𝑚

2 such that 𝑀 = 𝑢 ⊗ 𝑢. Khot and Saket described a 6-query test such
that if some encoding function 𝑓 ∶ 𝔽𝑚×𝑚

2 → 𝔽2 passes the test with non-trivial
probability, then we can decode it into a low rank matrix.

In order to use this encoding, it seems natural that one would like to construct
some variant of Label-Cover where the labels are now matrices, with some linear
constraints on the entries of the matrices (since as discussed above we are using
Hadamard-Code to encode the matrices). In the completeness case, we would like
to have some matrix labelings of rank 1 that satisfies all linear constraints on the
vertices as well as projection constraints on the edges, and in the soundness case,
not even labelings with low rank matrices can satisfy more than a small fraction of
them.

Such Label-Cover hardness result is not readily available. Khot and Saket
proposed the notion of superposition complexity for quadratic equations. Briefly
speaking, let 𝑞(𝑥) = 𝑐+∑𝑚

𝑖=1 𝑐𝑖𝑥𝑖+∑1≤𝑖<𝑗≤𝑚 𝑐𝑖𝑗𝑥𝑖𝑥𝑗 = 0 be a quadratic equation
on 𝑚 𝔽2-variables. We say that 𝑡 assignments 𝑎(1), … , 𝑎(𝑡) ∈ 𝔽𝑚

2 satisfy the equation
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𝑞(𝑥) = 0 in superposition if

𝑐 +
𝑚

∑
𝑖=1

𝑐𝑖 (
𝑡

∑
𝑙=1

𝑎(𝑙)
𝑖 ) + ∑

1≤𝑖<𝑗≤𝑚
𝑐𝑖𝑗 (

𝑡
∑
𝑙=1

𝑎(𝑙)
𝑖 𝑎(𝑙)

𝑗 ) = 0 .

If we have a system of quadratic equations, then we say that 𝑡 assignments satisfy
the system of quadratic equations in superposition if each quadratic equation is sat-
isfied in superposition. Having a small number of assignments satisfying quadratic
constraints in superposition is exactly the same as having a symmetric low-rank
matrix satisfying the linearized version of the constraints, as we discuss in more
detail in Section 8.2.

Through a remarkable chain of reductions, Khot and Saket established the in-
approximability of quadratic equations with superposition complexity, as well as
the actual construction of the Label-Cover with matrix labels. They started
with superposition hardness for E3-Sat with gap of 1/𝑛, and used low-degree test-
ing and sum-check protocol like in the original proof of the PCP theorem [6, 7]
to achieve a superposition hardness result for systems of quadratic equations with
good soundness and moderate increase in size. This is then followed by a Point
versus Surface test which produces the actual Label-Cover instance.

The focus of this chapter is also the construction of such Label-Cover in-
stances. Let 𝑡 be some odd natural number. A set of 𝑡 assignments odd-covers an
equation (or more generally, a constraint) if the number of assignments that satisfy
the equation is odd. We show in Section 8.2 that the notion of odd-covering is
equivalent to satisfaction in superposition when the number of assignments is odd.
This viewpoint enables us to construct the kind of Label-Cover instance used in
[77] very easily. In fact, the reduction in Section 8.3 looks very much like a classical
CSP inapproximability proof.

Although simpler, the above observation alone is not sufficient to give us a
hardness result better than [77]. The issue here is that for the reduction in Section
8.3 to work for our choice of parameters, the soundness of the Label-Cover that
we start with needs to be sub-constant, and a typical Long-Code reduction will
again blow up the size of the instance by too much. Hence, for this step, we
employ Low-Degree-Long-Code, and the analysis relies on Theorem 2.20, a
generalization of the Reed-Muller code testing result of [29].

8.2 Superposition and Odd-Covering

Before we discuss the relation between superposition, odd-covering and low rank
matrices, we define an operation on vectors and matrices that we will use frequently.

Definition 8.1. Define 𝐷1 ∶ 𝔽𝑚+1
2 → 𝔽𝑚

2 as the operator that removes the first
coordinate of a vector. Define 𝐷1 similarly for matrices as the operator that removes
the first row and column of a given matrix.
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Khot and Saket [77] defined the notion of satisfying in superposition as follows.

Definition 8.2 (Superposition). Let 𝑎(1), … , 𝑎(𝑡) ∈ 𝔽𝑚
2 be 𝑡 assignments and 𝑞(𝑥) =

0 be a quadratic equation in 𝑚 𝔽2-variables with

𝑞(𝑥) = 𝑐 +
𝑚

∑
𝑖=1

𝑐𝑖𝑥𝑖 + ∑
1≤𝑖<𝑗≤𝑚

𝑐𝑖𝑗𝑥𝑖𝑥𝑗 .

We say that the 𝑡 assignments satisfy the equation 𝑞(𝑥) = 0 in superposition if

𝑐 +
𝑚

∑
𝑖=1

𝑐𝑖 (
𝑡

∑
𝑙=1

𝑎(𝑙)
𝑖 ) + ∑

1≤𝑖<𝑗≤𝑚
𝑐𝑖𝑗 (

𝑡
∑
𝑙=1

𝑎(𝑙)
𝑖 𝑎(𝑙)

𝑗 ) = 0 .

Definition 8.3. Given a system of quadratic equations {𝑞𝑖(𝑥) = 0}𝐿
𝑖=1 on variables

𝑥1, … , 𝑥𝑚, its superposition complexity is the minimum number 𝑡, if it exists, such
that there are 𝑡 assignments 𝑎(1), … , 𝑎(𝑡) ∈ 𝔽𝑚

2 that satisfy each equation 𝑞𝑖(𝑥) = 0
in superposition.

We define the odd superposition complexity (or even superposition complexity)
to be the minimum odd integer 𝑡 (or even integer 𝑡, respectively) such that there are
𝑡 assignments that satisfy all equations in superposition.

Note that by simply adding all-0 assignments, we can argue that the above three
notions of superposition complexity differ by at most 1.

We now explain the relation between superposition complexity of quadratic
equations and low rank matrices. Assume for simplicity of exposition that the
quadratic equation 𝑞(𝑥) = 0 as defined above is homogeneous, that is, the constant
term 𝑐 and the linear coefficients 𝑐𝑖 are all 0.

We can express a homogeneous quadratic equation 𝑞(𝑥) = 0 with a matrix by
defining 𝐶 ∈ 𝔽𝑚×𝑚

2 , where 𝐶𝑖𝑗 = 𝑐𝑖𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, and 𝐶𝑖𝑗 = 0 otherwise.
Let 𝑥 = (𝑥1 𝑥2 … 𝑥𝑚). Then 𝑞(𝑥) = 0 is the same as ⟨𝐶, 𝑥 ⊗ 𝑥⟩ = 𝑥𝑇 𝐶𝑥 = 0,
where ⟨⋅, ⋅⟩ denotes the entry-wise dot product of two matrices. Note that 𝑥 ⊗ 𝑥 is
a symmetric rank-1 matrix.

Suppose now that we have a symmetric matrix 𝐴 such that ⟨𝐶, 𝐴⟩ = 0. For a
fixed 𝐶, this is a linear constraint on the entries of 𝐴. If in addition 𝐴 has rank 1,
then there exists 𝑥𝑎, such that 𝐴 = 𝑥𝑎 ⊗ 𝑥𝑎, and by the above, we have that 𝑥𝑎
satisfies 𝑞(𝑥𝑎) = 0. Therefore, if 𝐴 is a symmetric rank 1 matrix and ⟨𝐶, 𝐴⟩ = 0,
then 𝐴 encodes an assignment that satisfies the quadratic equation 𝑞(𝑥) = 0.

The following decomposition lemma from [77] illustrates the situation when 𝐴
has low rank.

Lemma 8.4. Let 𝐴 ∈ 𝔽𝑚×𝑚
2 be a symmetric matrix of rank 𝑘 over 𝔽2. Then

there exists 𝑙 ≤ 3𝑘/2 and vectors 𝑣1, … , 𝑣𝑙 in the column space of 𝐴, such that
𝐴 = ∑𝑙

𝑖=1 𝑣𝑖 ⊗ 𝑣𝑖.
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Let 𝐴 be a low rank matrix and 𝑣1, … , 𝑣𝑙 be 𝑙 ≤ 3𝑘/2 assignments given by
Lemma 8.4. Then

0 = ⟨𝐶, 𝐴⟩ =
𝑙

∑
𝑡=1

⟨𝐶, 𝑣𝑡 ⊗ 𝑣𝑡⟩

=
𝑙

∑
𝑡=1

∑
1≤𝑖<𝑗≤𝑚

𝑐𝑖𝑗𝑣𝑡𝑖𝑣𝑡𝑗

= ∑
1≤𝑖<𝑗≤𝑚

𝑐𝑖𝑗

𝑙
∑
𝑡=1

𝑣𝑡𝑖𝑣𝑡𝑗 .

Therefore we have that 𝑣1, … , 𝑣𝑙 satisfy 𝑞(𝑥) = 0 in superposition.
The notion we will now consider is the following, which we call odd-covering.

Definition 8.5 (Odd-covering). Let 𝑎(1), … , 𝑎(𝑡) ∈ 𝔽𝑚
2 be 𝑡 assignments and 𝑞(𝑥) =

0 be a quadratic equation in 𝑚 𝔽2-variables as defined above. We say that the 𝑡
assignments odd-cover the equation 𝑞(𝑥) = 0 if the number of assignments 𝑎(𝑙) that
satisfies 𝑞(𝑎(𝑙)) = 0 is odd.

The key observation is that odd-covering and satisfying in superposition are
equivalent when the number of assignments involved is odd.

Lemma 8.6. Let 𝑡 be an odd integer and 𝑎(1), … , 𝑎(𝑡) ∈ 𝔽𝑚
2 be 𝑡 assignments, and

𝑞(𝑥) = 0 be a quadratic equation in 𝑚 𝔽2-variables as defined above. Then the
𝑡 assignments satisfy 𝑞(𝑥) = 0 in superposition if and only if the 𝑡 assignments
odd-cover 𝑞(𝑥) = 0.

Proof. Using the fact that 𝑡 is odd, we have the following

𝑡
∑
𝑙=1

𝑞(𝑎(𝑙)) =
𝑡

∑
𝑙=1

(𝑐 +
𝑚

∑
𝑖=1

𝑐𝑖𝑎(𝑙)
𝑖 + ∑

1≤𝑖<𝑗≤𝑚
𝑐𝑖𝑗𝑎(𝑙)

𝑖 𝑎(𝑙)
𝑗 )

= 𝑡 ⋅ 𝑐 +
𝑡

∑
𝑙=1

𝑚
∑
𝑖=1

𝑐𝑖𝑎(𝑙)
𝑖 +

𝑡
∑
𝑙=1

∑
1≤𝑖<𝑗≤𝑚

𝑐𝑖𝑗𝑎(𝑙)
𝑖 𝑎(𝑙)

𝑗

= 𝑐 +
𝑚

∑
𝑖=1

𝑐𝑖 (
𝑡

∑
𝑙=1

𝑎(𝑙)
𝑖 ) + ∑

1≤𝑖<𝑗≤𝑚
𝑐𝑖𝑗 (

𝑡
∑
𝑙=1

𝑎(𝑙)
𝑖 𝑎(𝑙)

𝑗 ) .

Now observe that the 𝑡 assignments odd-cover 𝑞(𝑥) = 0 if and only if the number
of assignments that does not satisfy 𝑞(𝑥) = 0 is even, which is equivalent to saying
that the left hand side of the above equation is 0, and that by definition means that
the 𝑡 assignments satisfy 𝑞(𝑥) = 0 in superposition.

In the description above, we assumed that the quadratic equation 𝑞(𝑥) = 0 is
homogeneous, which allows us to encode it with a matrix 𝐶 ∈ 𝔽𝑚×𝑚

2 and express
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the whole equation as ⟨𝐶, 𝐴⟩ = 0, where 𝐴 = 𝑥 ⊗ 𝑥. For quadratic equations
that are not homogeneous, we encode them with a (𝑚 + 1) × (𝑚 + 1) matrix.
In particular, for 𝑞(𝑥) = 𝑐 + ∑ 𝑐𝑖𝑥𝑖 + ∑ 𝑐𝑖𝑗𝑥𝑖𝑥𝑗 = 0, we have matrix 𝐶, where
𝐶11 = 𝑐, 𝐶1𝑖 = 𝑐𝑖−1 for 𝑖 = 2, … , 𝑚 + 1, and 𝐶𝑖𝑗 = 𝑐𝑖−1,𝑗−1 for 2 ≤ 𝑖 < 𝑗 ≤ 𝑚 + 1.
As for the variable vector, we insert an entry with value 1 at the beginning of 𝑥.

Definition 8.7. Given a matrix 𝐴 ∈ 𝔽(𝑚+1)×(𝑚+1)
2 . We say that 𝐴 is pseudo-

quadratic if the following holds:

• 𝐴 is symmetric.

• 𝐴1,1 = 1.

• For all 𝑖 = 2, … , 𝑚 + 1, 𝐴1,𝑖 = 𝐴𝑖,1 = 𝐴𝑖,𝑖.

Note that for vector 𝑣 ∈ 𝔽𝑚+1
2 such that 𝑣1 = 1, 𝑣 ⊗ 𝑣 is a pseudo-quadratic

rank-1 matrix.
We prove a stronger form of Lemma 8.4 for pseudo-quadratic matrices where

we decode a low rank pseudo-quadratic matrix into an odd number of assignments.

Lemma 8.8. Let 𝐴 ∈ 𝔽(𝑚+1)×(𝑚+1)
2 be a pseudo-quadratic matrix of rank 𝑘 over

𝔽2. Then there exists an odd integer 𝑘0 < 3𝑘/2+1, and vectors 𝑣1, … , 𝑣𝑘0
∈ 𝔽𝑚+1

2 ,
such that for all 𝑖 ∈ [𝑘0], 𝑣𝑖,1 = 1, and 𝐴 = ∑𝑘0

𝑖=1 𝑣𝑖⊗𝑣𝑖. Moreover, for all 𝑖 ∈ [𝑘0],
𝐷1(𝑣𝑖) is in the column space of 𝐷1(𝐴).

Proof. Let 𝐴′ = 𝐷1(𝐴). Note that 𝐴′ is symmetric and has rank at most 𝑘.
Therefore by Lemma 8.4, there exists 𝑙 < 3𝑘/2 vectors 𝑢1, … , 𝑢𝑙 ∈ 𝔽𝑚

2 , such that
𝐴′ = ∑𝑙

𝑖=1 𝑢𝑖 ⊗ 𝑢𝑖. Now consider vectors 𝑣1, … , 𝑣𝑙 ∈ 𝔽𝑚+1
2 , where for each 𝑖,

𝑣𝑖,1 = 1 and 𝑣𝑖,𝑗 = 𝑢𝑖,𝑗−1 for 𝑗 = 2, … , 𝑚 + 1. Let 𝐴″ = ∑𝑙
𝑖=1 𝑣𝑖 ⊗ 𝑣𝑖, and

𝐵 = 𝐴 − 𝐴″. For 𝑗, 𝑗′ ∈ {2, … , 𝑚 + 1}, we have

𝐴″
𝑗,𝑗′ =

𝑙
∑
𝑖=1

𝑣𝑖,𝑗𝑣𝑖,𝑗′ =
𝑙

∑
𝑖=1

𝑢𝑖,𝑗−1𝑢𝑖,𝑗′−1 = 𝐴′
𝑗−1,𝑗′−1 = 𝐴𝑗,𝑗′ .

Moreover, we have

𝐴″
1,𝑗 =

𝑙
∑
𝑖=1

𝑣𝑖,1𝑣𝑖,𝑗 =
𝑙

∑
𝑖=1

𝑣𝑖,𝑗𝑣𝑖,𝑗 = 𝐴″
𝑗,𝑗 = 𝐴𝑗,𝑗 = 𝐴1,𝑗 .

We conclude that for all (𝑖, 𝑗) ≠ (1, 1), 𝐴𝑖,𝑗 = 𝐴″
𝑖,𝑗. Note that 𝐴″

1,1 = (𝑙 mod 2).
Therefore if 𝐴″

1,1 = 1 = 𝐴1,1, then we have 𝑙 is odd and 𝐴 = ∑𝑙
𝑖=1 𝑣𝑖 ⊗ 𝑣𝑖

as promised. Otherwise 𝑙 is even. Let 𝑒 = (1 0 … 0) ∈ 𝔽𝑚+1
2 . Then 𝐴 =

∑𝑙
𝑖=1 𝑣𝑖 ⊗ 𝑣𝑖 + 𝑒 ⊗ 𝑒 gives the desired decomposition.
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The following lemma summarizes the discussion at the beginning of this section
and relates odd superposition complexity with low-rank pseudo-quadratic matrices.

Lemma 8.9. Let 𝑞1(𝑥) = 0, … , 𝑞𝑠(𝑥) = 0 be a set of 𝑠 quadratic equations on
variable 𝑥1, … , 𝑥𝑚, and let 𝑄1, … , 𝑄𝑠 ∈ 𝔽(𝑚+1)×(𝑚+1)

2 be their corresponding ma-
trix forms. Suppose there is a pseudo-quadratic matrix 𝐴 ∈ 𝔽(𝑚+1)×(𝑚+1)

2 such
that rank(𝐴) ≤ 𝑘 and for all 𝑖 ∈ [𝑠], ⟨𝑄𝑖, 𝐴⟩ = 0, then there exists 𝑙 < 3𝑘/2 + 1
vectors 𝑎(1), … , 𝑎(𝑙) ∈ 𝔽𝑚+1

2 in the column space of 𝐴, for some odd integer 𝑙, such
that 𝐴 = ∑𝑙

𝑖=1 𝑎(𝑖) ⊗ 𝑎(𝑖). This implies that the assignments 𝐷1(𝑎(1)), … , 𝐷1(𝑎(𝑙))
satisfy all equations 𝑞1(𝑥) = 0, … , 𝑞𝑠(𝑥) = 0 in superposition.

Proof. Apply Lemma 8.8 to 𝐴, and let 𝑣1, … , 𝑣𝑙 be the vectors we get, with 𝑣𝑖1 = 1
for 𝑖 ∈ [𝑙], and 𝐴 = ∑𝑖∈[𝑙] 𝑣𝑖 ⊗ 𝑣𝑖. We now verify that 𝐷1(𝑣1), … , 𝐷1(𝑣𝑙) satisfy
all equations in superposition.

Consider equation 𝑖 for 𝑖 ∈ [𝑠]. We have

0 = ⟨𝑄𝑖, 𝐴⟩ =
𝑙

∑
𝑖=1

⟨𝑄𝑖, 𝑣𝑖 ⊗ 𝑣𝑖⟩

=
𝑙

∑
𝑖=1

𝑞𝑖(𝑣𝑖) .

By definition, we have that 𝑣1, … , 𝑣𝑙 satisfy 𝑞𝑖 in superposition.

8.3 Superposition Hardness for Gap-TSA

Let 𝑏 be some large integer parameter. Recall that the TSA predicate is a predicate
on 5 𝔽2-variables defined as follows

TSA(𝑥1, … , 𝑥5) = 1 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4𝑥5 .

From the definition, we can see that TSA instances are systems of quadratic equa-
tions, each involving exactly 5 𝔽2-variables.

The predicate was studied in [55] as a starting point of an efficient PCP con-
struction. For the predicate itself, Håstad and Khot proved that it is approximation
resistant on satisfiable instances.

We now prove an superposition hardness result for Gap-TSA.

Theorem 8.10. There is a reduction that takes as input a E3-Sat instance of size
𝑛, and outputs a TSA instance of size 𝑛𝑂(𝑏 log log 𝑛) with the following properties:

• If the E3-Sat instance is satisfiable, then there is an assignment that satisfies
all TSA constraints.
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• If the E3-Sat instance is unsatisfiable, then for any odd integer 𝑡 < (log 𝑛)𝑏,
and any 𝑡 assignments, at most a 15/16 fraction of the TSA constraints are
satisfied in superposition.

The reduction runs in time 𝑛𝑂(𝑏 log log 𝑛).

Proof. The reduction follows a similar approach as a typical inapproximability hard-
ness reduction.

Given a E3-Sat instance of size 𝑛, we apply Theorem 3.10 with soundness
1/(1000(log 𝑛)2𝑏) to get a Label-Cover instance. This gives the parameter 𝑟 =
(2𝑏 log log 𝑛 + 𝑂(1))/𝜀0, where 𝜀0 is some universal constant. The vertex set of
the bipartite graph has size 𝑛𝑂(𝑏 log log 𝑛), and the label sets are 𝐿 = {0, 1}𝑟 and
𝑅 = {0, 1}3𝑟. Let 𝑑 = Θ(𝑏 log log 𝑛) be such that 2𝑑/2−4 ≈ (log 𝑛)𝑏 + 3. This
implies also that 2𝑑 ≈ 256(log 𝑛)2𝑏.

For each 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 , we expect functions 𝑓𝑢 ∶ P𝑟,𝑑 → {−1, 1} and
𝑔𝑣 ∶ P3𝑟,𝑑 → {−1, 1}. We assume that all functions are folded over constant. The
entries of the functions correspond to variables of some TSA instance. Therefore
the number of variables in the output instance is 𝑛𝑂(𝑏 log log 𝑛) ⋅ (3𝑟)(1+𝑜(1))𝑑 =
𝑛𝑂(𝑏 log log 𝑛), and the number of constraints is polynomial in the number of vari-
ables.

Consider the following test:

1. Sample random edge 𝑒 = {𝑢1, 𝑢2} ∼ 𝐸. Let 𝜋 be the projection on the edge,
and let 𝑓 and 𝑔 be the functions associated with 𝑢1 and 𝑢2.

2. Sample uniformly random query 𝑥 ∼ P𝑟,𝑑, 𝑦 ∼ P3𝑟,𝑑, and 𝑣, 𝑤 ∼ P3𝑟,𝑑/2.

3. Construct query 𝑧 ∶= 𝑥 ∘ 𝜋 + 𝑦 + 𝑣𝑤 ∈ P3𝑟,𝑑.

4. Accept iff 𝑓(𝑥)𝑔(𝑦)𝑔(𝑧)(𝑔(𝑣) ∧ 𝑔(𝑤)) = 1, where ∧ here denotes the binary
operator that evaluates to −1 when both operands are −1, and 1 otherwise.

The completeness is straightforward. In this case, the Label-Cover instance has
a perfect labeling. Setting the functions to be the Low-Degree-Long-Code
encoding of the labels gives an assignment that satisfies all TSA constraints.

In the soundness case, there exists some 𝑡 < (log 𝑛)𝑏 assignments that satisfy in
superposition a 15/16 fraction of the constraints. That is, for each 𝑢1 ∈ 𝑈 and 𝑢2 ∈
𝑉 , there are 𝑡 functions that are folded over constant, 𝑓 (1), … , 𝑓 (𝑡) ∶ P𝑟,𝑑 → {−1, 1}
and 𝑔(1), … , 𝑔(𝑡) ∶ P3𝑟,𝑑 → {−1, 1} such that over random sample of edges {𝑢1, 𝑢2}
and queries 𝑥, 𝑦, 𝑧, 𝑣, 𝑤, with probability at least 15/16, the number of 𝑖 ∈ [𝑡] such
that 𝑓 (𝑖)(𝑥)𝑔(𝑖)(𝑦)𝑔(𝑖)(𝑧)(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤)) = 1 is odd. By an averaging argument,
we have that for at least 3/4 of the edges, over random sample of queries, the above
holds with probability at least 3/4. Call such an edge good.

We assume that the functions are folded in the same way. Recall that when
applying folding, we partition the domain of the functions into equivalence classes,
define the function value in one of the equivalence classes, and then extend to the



8.3. SUPERPOSITION HARDNESS FOR GAP-TSA 115

full domain by adding appropriate constants. For our reduction, we identify one
equivalence class for each vertex, and the 𝑡 functions associated with it supply value
only for that equivalence class. This is to make sure 𝑓 (1), … , 𝑓 (𝑡) and 𝑔(1), … , 𝑔(𝑡)

corresponds exactly to 𝑡 assignments in superposition.
Fix a good edge for now, and we drop the subscripts 𝑢1 and 𝑢2. Then we have

the following

1
2 + 1

2 𝐄
𝑥,𝑦,𝑧,𝑣,𝑤

[
𝑡

∏
𝑖=1

(𝑓 (𝑖)(𝑥)𝑔(𝑖)(𝑦)𝑔(𝑖)(𝑧)(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤)))] ≥ 3
4 ,

or

𝐄
𝑥,𝑦,𝑧,𝑣,𝑤

[
𝑡

∏
𝑖=1

(𝑓 (𝑖)(𝑥)𝑔(𝑖)(𝑦)𝑔(𝑖)(𝑧)(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤)))] ≥ 1
2 .

Let 𝑓′ = ∏𝑡
𝑖=1 𝑓 (𝑖), and 𝑔′ = ∏𝑡

𝑖=1 𝑔(𝑖). Since 𝑡 is odd, we have that 𝑓′ and 𝑔′

are both folded over constant. Taking the Fourier expansion of 𝑓′ and 𝑔′, we have
the following

1
2 ≤ 𝐄

𝑥,𝑦,𝑧,𝑣,𝑤
[

𝑡
∏
𝑖=1

(𝑓 (𝑖)(𝑥)𝑔(𝑖)(𝑦)𝑔(𝑖)(𝑧)(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤)))]

= 𝐄 [𝑓′(𝑥)𝑔′(𝑦)𝑔′(𝑧)
𝑡

∏
𝑖=1

(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤))]

= ∑
𝛼∈Λ𝑟,𝑑

𝛽1,𝛽2∈Λ3𝑟,𝑑

𝑓′
𝛼𝑔′

𝛽1
𝑔′

𝛽2

𝐄
𝑥,𝑦,𝑧,𝑣,𝑤

[𝜒𝛼(𝑥)𝜒𝛽1
(𝑦)𝜒𝛽2

(𝑥 ∘ 𝜋 + 𝑦 + 𝑣𝑤)
𝑡

∏
𝑖=1

(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤))]

= ∑
𝛽∈Λ3𝑟,𝑑

𝑓′
𝜋2(𝛽)𝑔′2

𝛽 𝐄
𝑣𝑤

[𝜒𝛽(𝑣𝑤)
𝑡

∏
𝑖=1

(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤))] .

Applying Cauchy-Schwarz and using Parseval, we have

1
4 ≤ ⎛⎜

⎝
∑

𝛽∈Λ3𝑟,𝑑

𝑔′2
𝛽

⎞⎟
⎠

⎛⎜
⎝

∑
𝛽∈Λ3𝑟,𝑑

𝑓′2
𝜋2(𝛽)𝑔′2

𝛽 𝐄
𝑣𝑤

[𝜒𝛽(𝑣𝑤)
𝑡

∏
𝑖=1

(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤))]
2
⎞⎟
⎠

= ∑
𝛽∈Λ3𝑟,𝑑∶wt(𝛽)≤2𝑑−4

𝑓′2
𝜋2(𝛽)𝑔′2

𝛽 𝐄
𝑣𝑤

[𝜒𝛽(𝑣𝑤)
𝑡

∏
𝑖=1

(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤))]
2

+

∑
𝛽∈Λ3𝑟,𝑑∶wt(𝛽)>2𝑑−4

𝑓′2
𝜋2(𝛽)𝑔′2

𝛽 𝐄
𝑣𝑤

[𝜒𝛽(𝑣𝑤)
𝑡

∏
𝑖=1

(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤))]
2

.
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For the terms where wt(𝛽) > 2𝑑−4, we apply Theorem 2.20 to get

∣ 𝐄
𝑣𝑤

[𝜒𝛽(𝑣𝑤)
𝑡

∏
𝑖=1

(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤))]∣ ≤ 2−(2𝑑/2−4−𝑡)/2 ,

and therefore

∑
𝛽∈Λ3𝑟,𝑑∶wt(𝛽)>2𝑑−4

𝑓′2
𝜋2(𝛽)𝑔′2

𝛽

𝐄
𝑣𝑤

[𝜒𝛽(𝑣𝑤)
𝑡

∏
𝑖=1

(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤))]
2

≤ 2−(2𝑑/2−4−𝑡) < 1
8 .

This gives us

∑
𝛽∈Λ3𝑟,𝑑∶wt(𝛽)≤2𝑑−4

𝑓′2
𝜋2(𝛽)𝑔′2

𝛽

≥ ∑
𝛽∈Λ3𝑟,𝑑∶wt(𝛽)≤2𝑑−4

𝑓′2
𝜋2(𝛽)𝑔′2

𝛽 𝐄
𝑣𝑤

[𝜒𝛽(𝑣𝑤)
𝑡

∏
𝑖=1

(𝑔(𝑖)(𝑣) ∧ 𝑔(𝑖)(𝑤))]
2

≥ 1
8 .

Let {𝑢1, 𝑢2} be a good edge. Consider the following labeling strategy: for 𝑢1,
pick 𝛼 with probability 𝑓′2

𝛼 and pick a random label from supp(𝛼), and for 𝑢2, pick
𝛽 with probability 𝑔′2

𝛽 and pick a random label from supp(𝛽). The procedure is
well defined because 𝑓′ and 𝑔′ are all folded, and thus by Lemma 2.53, supp(𝛼) and
supp(𝛽) are nonempty. Also, for 𝛽 such that wt(𝛽) ≤ 2𝑑−4 < 2𝑑−3, by Lemma 2.55,
the assignments in supp(𝛽) all satisfy the clauses in 𝑢2. Then the probability that
the labeling of 𝑢1 and 𝑢2 satisfies the projection constraint on a good edge {𝑢1, 𝑢2}
is at least 1

2𝑑−4 ∑𝛽∶𝑤𝑡(𝛽)≤2𝑑−4 𝑓′2
𝜋2(𝛽)𝑔′2

𝛽 ≥ 1/(8 ⋅ 2𝑑−4) > 1/(100(log 𝑛)2𝑏). Since
there are at least a 3/4 fraction of good edges, overall the labeling satisfies more
than (3/4) ⋅ (1/(100(log 𝑛)2𝑏)) > 1/(1000(log 𝑛)2𝑏), contradicting the fact that in
the soundness case the Label-Cover instance does not have labeling with value
larger than 1/(1000(log 𝑛)2𝑏). This completes the proof.

8.4 Label-Cover with Matrix Labels

We now use Theorem 8.10 to construct a Label-Cover instance with properties
similar to that in [77].

Let 𝑏 be some large integer parameter, and 𝑡 ≈ (log 𝑛)𝑏 be an odd integer.
Given a TSA instance with 𝑡-superposition hardness gap of 15/16 from Theorem
8.10, consider the following 2-Prover-1-Round projection game:

1. The referee picks a TSA constraint, which we denote as 𝒞(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5),
and then picks randomly 𝑖 ∈ [5].



8.4. LABEL-COVER WITH MATRIX LABELS 117

2. The referee sends 𝑥𝑖 to Alice and 𝒞 to Bob.

3. Alice replies with 𝑎 ∈ 𝔽𝑡
2, and Bob replies with 𝑏 ∈ (𝔽𝑡

2)5.

4. The referee accepts iff 𝑏, interpreted as 𝑡 𝔽2 assignments, satisfies 𝒞 in super-
position, and 𝑏𝑖 = 𝑎.

This is a projection game with perfect completeness and soundness 79/80.
Using Theorem 3.9, we get the following Label-Cover construction. Note that

it is important that we use Theorem 3.9 in [92] instead of the original version in
[93], because the answer size is non-constant and it is important that the rate at
which soundness decreases is independent of that.

Theorem 8.11. There exists a reduction that takes a E3-Sat instance of size
𝑛, and outputs a Label-Cover instance (𝑈, 𝑉 , 𝐸, 𝐿, 𝑅, Π, Γ) with the following
properties:

• The bipartite graph (𝑈, 𝑉 , 𝐸) has size exp((log 𝑛)(2+𝑜(1))𝑏), and the reduction
runs in time exp((log 𝑛)(2+𝑜(1))𝑏).

• The label set 𝑅 = 𝔽𝑚𝑟
2 , 𝐿 = 𝔽𝑚𝑙

2 , where 𝑚𝑙, 𝑚𝑟 = (log 𝑛)(2+𝑜(1))𝑏.

• For each 𝑣 ∈ 𝑉 , there is a set of quadratic 𝔽2 equations, each involving 5 of
the 𝑚𝑟 coordinates of the labeling of 𝑣. The set of valid labelings Γ(𝑣) are
those that satisfy all quadratic equations.

• For each edge 𝑒 ∈ 𝐸, there is a set 𝑆𝑒 ⊆ [𝑚𝑟], such that 𝜋𝑒 ∶ 𝔽𝑚𝑟
2 → 𝔽𝑚𝑙

2 is
defined as 𝜋𝑒(𝑟) = 𝑟𝑆𝑒

.

• If the E3-Sat instance is satisfiable, then there is a labeling that satisfies
all quadratic equation constraints for all vertices 𝑣 ∈ 𝑉 , and all projection
constraints for all edges.

• If the E3-Sat instance is unsatisfiable, then for any odd integer 𝑙 < (log 𝑛)𝑏,
any labeling 𝜎(1), … , 𝜎(𝑙) for the vertices in 𝑈 and 𝑉 , the following does not
hold simultaneously:

– For each 𝑣 ∈ 𝑉 , and for each equation 𝑞 associated with 𝑣, the assignment
given by 𝜎(1)(𝑣), … , 𝜎(𝑙)(𝑣) satisfy 𝑞 in superposition.

– For at least 2−(log 𝑛)(2+𝑜(1))𝑏 fraction of the edges 𝑒 = {𝑢, 𝑣}, we have
𝜋𝑒(𝜎(𝑗)(𝑣)) = 𝜎(𝑗)(𝑢), ∀𝑗 ∈ [𝑙].

We now convert the above into a Label-Cover instance with matrix label and
rank soundness constraint.

Theorem 8.12. There exists a reduction that takes a E3-Sat instance of size
𝑛, and outputs a Label-Cover instance (𝑈, 𝑉 , 𝐸, 𝐿, 𝑅, Π, Γ) with the following
properties:
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• The bipartite graph (𝑈, 𝑉 , 𝐸) has size exp((log 𝑛)(2+𝑜(1))𝑏), and the reduction
runs in time exp((log 𝑛)(2+𝑜(1))𝑏).

• The label sets are matrices 𝑅 = 𝔽(𝑚𝑟+1)×(𝑚𝑟+1)
2 , 𝐿 = 𝔽(𝑚𝑙+1)×(𝑚𝑙+1)

2 , where
𝑚𝑙, 𝑚𝑟 = (log 𝑛)(2+𝑜(1))𝑏.

• For each 𝑣 ∈ 𝑉 , there is a set of homogeneous linear 𝔽2 equations involving
entries of the labeling of 𝑣. The set of valid labelings Γ(𝑣) consists of matrices
that satisfy all the associated linear equations.

• For each edge 𝑒 ∈ 𝐸, there is a set 𝑆𝑒 ⊆ [𝑚𝑟 + 1], 1 ∈ 𝑆𝑒, such that
𝜋𝑒 ∶ 𝔽(𝑚𝑟+1)×(𝑚𝑟+1)

2 → 𝔽(𝑚𝑙+1)×(𝑚𝑙+1)
2 is defined as 𝜋𝑒(𝑟) = 𝑟𝑆𝑒

.

• If the E3-Sat instance is satisfiable, then for each 𝑢 ∈ 𝑈 , there is a labeling
𝑀𝑢 = 𝑥𝑢 ⊗ 𝑥𝑢 where 𝑥𝑢,1 = 1, and for each 𝑣 ∈ 𝑉 , there is a labeling
𝑀𝑣 = 𝑥𝑣 ⊗ 𝑥𝑣 where 𝑥𝑣,1 = 1, such that for all 𝑣 ∈ 𝑉 , 𝑀𝑣 ∈ Γ(𝑣), and for
all 𝑒 ∈ 𝐸, 𝜋𝑒(𝑀𝑣) = 𝑀𝑣|𝑆𝑒

= 𝑀𝑢.

• If the E3-Sat instance is unsatisfiable, then for any labeling 𝜎 for the vertices
in 𝑈 and 𝑉 , the following does not hold simultaneously:

– For each 𝑣 ∈ 𝑉 , the matrix 𝜎(𝑣) is pseudo-quadratic, has rank(𝜎(𝑣)) ≤
(log 𝑛)𝑏/2, and is valid 𝜎(𝑣) ∈ Γ(𝑣).

– For at least 2−(log 𝑛)𝑏 fraction of the edges 𝑒 = {𝑢, 𝑣}, we have 𝜋𝑒(𝜎(𝑣)) =
𝜎(𝑢).

Proof. We start with the Label-Cover instance from the previous theorem.
The underlying bipartite graph of the new instance is exactly the same. The

parameters 𝑚𝑟 and 𝑚𝑙 are the same as before. The labels for 𝑢 ∈ 𝑈 in the new
instance are now matrices from 𝔽(𝑚𝑙+1)×(𝑚𝑙+1)

2 , and the labels for 𝑣 ∈ 𝑉 are from
𝔽(𝑚𝑟+1)×(𝑚𝑟+1)

2 . The constraints for labelings for vertices in 𝑣 ∈ 𝑉 are the following:

1. The matrix label 𝑀 is symmetric, and for 𝑖 = 2, … , 𝑚𝑟 + 1, we have 𝑀𝑖,𝑖 =
𝑀1,𝑖 = 𝑀𝑖,1. These are all homogeneous linear constraints. Note that if in
addition we have 𝑀1,1 = 1, then we get that 𝑀 is pseudo-quadratic. Here,
however, we do not include the latter constraint as it is not homogeneous. In
fact, this will be handled by the inner verifier.

2. For each quadratic constraint in the previous instance, we include the lin-
earized version of it in the new instance. That is, term 𝑥𝑖𝑥𝑗 is replaced by
entry (𝑖 + 1, 𝑗 + 1) of the matrix, term 𝑥𝑖 is replaced by entry (1, 𝑖 + 1), and
constant 1 is replaced by entry (1, 1).

For edge 𝑒, let 𝑆𝑒 be the set associated with its projection in the old instance, then
in the new instance is defined by the set 𝑆′

𝑒 = {1} ∪ {𝑖 + 1 ∣ 𝑖 ∈ 𝑆𝑒}.
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The completeness case is straightforward. For the soundness case, suppose that
there are pseudo-quadratic matrices 𝑀𝑢 and 𝑀𝑣 for each 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 , such
that 𝑀𝑣 satisfies homogeneous linear constraints associated with 𝑣, rank(𝑀𝑣) ≤ 𝑘,
and that for 2−(log 𝑛)𝑏 fraction of the edges 𝑒, (𝑀𝑣)|𝑆𝑒

= 𝑀𝑢.
For such an edge 𝑒 = {𝑢, 𝑣}, by Lemma 8.9, there exists odd integer 𝑙 < 3/2 ⋅

(log 𝑛)𝑏/2 < (log 𝑛)𝑏 vectors 𝑣1, … , 𝑣𝑙 ∈ 𝔽𝑚𝑟+1
𝑞 , where 𝑣𝑖,1 = 1 for 𝑖 ∈ [𝑙], such that

𝑀𝑣 = ∑𝑙
𝑖=1 𝑣𝑖⊗𝑣𝑖, and the assignments 𝐷1(𝑣1), … , 𝐷1(𝑣𝑙) satisfy in superposition

the quadratic constraints of the old Label-Cover instance. For vertex 𝑢, we have
that rank(𝑀𝑢) = rank((𝑀𝑣)|𝑆) ≤ rank(𝑀𝑣). Also, 𝑀𝑢 = ∑𝑙

𝑖=1 𝑣𝑖|𝑆 ⊗ 𝑣𝑖|𝑆, and
that 𝐷1(𝑣𝑖)|𝑆−{1} are in the column space of 𝐷1(𝑀𝑢). Therefore, for any 𝑖 ∈ [𝑙],
if we take a uniformly random vector in the column space of 𝐷1(𝑀𝑢), then with
probability at least 2−(log 𝑛)𝑏/2, it will be equal to (𝑣′

𝑖)|𝑆. Repeat this for all 𝑖 ∈ [𝑙],
and we have that these labelings of 𝑢 all satisfy the projection constraint with
probability at least 2−(log 𝑛)2𝑏 .

Overall, this labeling satisfies 2−(log 𝑛)𝑏2−(log 𝑛)2𝑏 = 2−(log 𝑛)(2+𝑜(1))𝑏 fraction of
the edges in the old instance.

8.5 Inapproximability of Hypergraph Coloring

We now compose the Label-Cover from Theorem 8.12 with Quadratic-Code
inner-verifier to get inapproximability result for hypergraph coloring.

Theorem 8.13. There is a reduction that takes as input a E3-Sat instance of size
𝑛, outputs a 8-uniform hypergraph 𝐻 with the following properties:

• The size 𝐻 and the running time of the reduction are both upper-bounded by
exp((log 𝑛)(4+𝑜(1))𝑏).

• If the E3-Sat instance is satisfiable, then 𝐻 is 2-colorable.

• If the E3-Sat instance is unsatisfiable, then 𝐻 does not have independent set
of fractional size larger than 2−𝑂((log 𝑛)𝑏).

In other words, it is quasi-NP-hard to color a 2-colorable 8-uniform hypergraph of
size 𝑁 with less than 2(log 𝑁)1/4−𝑜(1) colors.

The following proof is based on a note by Girish Varma [103].
Given the Label-Cover instance from Theorem 8.12, we expect for each ver-

tex 𝑣 ∈ 𝑉 a function 𝑓𝑣 ∶ 𝔽(𝑚𝑟+1)×(𝑚𝑟+1)
2 → 𝔽2. The expected encoding for matrix

label 𝜎(𝑣) = 𝑎𝑣 ⊗ 𝑎𝑣 is 𝑓𝑣(𝐴) = ⟨𝑎𝑣 ⊗ 𝑎𝑣, 𝐴⟩ = 𝑎𝑇
𝑣 𝐴𝑎𝑣. Let ℋ𝑣 ⊆ 𝔽(𝑚𝑟+1)×(𝑚𝑟+1)

2
be the dual of the subspace of the set of pseudo-quadratic matrices that sat-
isfies the linear constraints associated with 𝑣. The function 𝑓𝑣 is folded over
𝔽(𝑚𝑟+1)×(𝑚𝑟+1)

2 /ℋ𝑣.
Consider the following Boolean 8-uniform test:
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• Choose 𝑢 ∈ 𝑈 uniformly at random, and 𝑣, 𝑤 ∈ 𝑉 uniformly and indepen-
dently at random from the neighbors of 𝑢. Let 𝜋, 𝜎 ∶ 𝔽(𝑚𝑟+1)×(𝑚𝑟+1)

2 →
𝔽(𝑚𝑙+1)×(𝑚𝑙+1)

2 be the projections corresponding to the edges (𝑢, 𝑣) and (𝑢, 𝑤)
respectively, and let 𝑆𝜋 and 𝑆𝜎 be the index set associated with them.

• Uniformly and independently sample 𝑋1, 𝑋2, 𝑌1, 𝑌2 ∈ 𝔽(𝑚𝑟+1)×(𝑚𝑟+1)
2 , 𝐹 ∈

𝔽(𝑚𝑙+1)×(𝑚𝑙+1)
2 , and 𝑥, 𝑦, 𝑧, 𝑥′, 𝑦′, 𝑧′ ∈ 𝔽𝑚𝑟+1

2 . Let 𝑒 ∈ 𝔽𝑚𝑟+1
2 be the vector

with only the 1-st entry 1 and the rest 0.

• Accept if and only if the following 8 values are not all equal:
𝑓𝑣(𝑋1) 𝑓𝑣(𝑋3) where 𝑋3 ∶= 𝑋1 + 𝑥 ⊗ 𝑦 + 𝐹 ∘ 𝜋
𝑓𝑣(𝑋2) 𝑓𝑣(𝑋4) where 𝑋4 ∶= 𝑋2 + (𝑥 + 𝑒) ⊗ 𝑧 + 𝐹 ∘ 𝜋
𝑓𝑤(𝑌1) 𝑓𝑤(𝑌3) where 𝑌3 ∶= 𝑌1 + 𝑥′ ⊗ 𝑦′ + 𝐹 ∘ 𝜎 + 𝑒 ⊗ 𝑒
𝑓𝑤(𝑌2) 𝑓𝑤(𝑌4) where 𝑌4 ∶= 𝑌2 + (𝑥′ + 𝑒) ⊗ 𝑧′ + 𝐹 ∘ 𝜎 + 𝑒 ⊗ 𝑒

We denote by 𝒯 the test distribution.
Let 𝐻 be the output hypergraph. The vertex set of 𝐻, denoted by 𝒱(𝐻), has

size

exp((log 𝑛)(2+𝑜(1))𝑏)) ⋅ 2(log 𝑛)2(2+𝑜(1))𝑏 = exp((log 𝑛)(4+𝑜(1))𝑏)) =∶ 𝑁 .

8.5.1 Completeness
Let 𝑦𝑣 ⊗ 𝑦𝑣 for 𝑣 ∈ 𝑉 and 𝑥𝑢 ⊗ 𝑥𝑢 for 𝑢 ∈ 𝑈 be a perfect labeling for the
Label Cover instance, with 𝑦𝑣,1 = 𝑥𝑢,1 = 1 and for each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸,
we have (𝑦𝑣)|𝑆𝑒

= 𝑥𝑢. Consider the 2-coloring where for each 𝑣 ∈ 𝑉 , 𝑓𝑣(𝑋) =
𝑦𝑇

𝑣 𝑋𝑦𝑣 = ⟨𝑋, 𝑦𝑣 ⊗ 𝑦𝑣⟩. Such a function is constant over cosets of ℋ𝑣. Let 𝑥1 ∶=
⟨𝑋1, 𝑦𝑣 ⊗ 𝑦𝑣⟩, 𝑥2 ∶= ⟨𝑋2, 𝑦𝑣 ⊗ 𝑦𝑣⟩, 𝑦1 ∶= ⟨𝑌1, 𝑦𝑤 ⊗ 𝑦𝑤⟩, 𝑦2 ∶= ⟨𝑌2, 𝑦𝑤 ⊗ 𝑦𝑤⟩, and
𝑓 ∶= ⟨𝐹 , 𝑥𝑢⊗𝑥𝑢⟩. Note that ⟨𝐹 , 𝑥𝑢⊗𝑥𝑢⟩ = ⟨𝐹 , 𝜋𝑢,𝑣(𝑦𝑣⊗𝑦𝑣)⟩ = ⟨𝐹 ∘𝜋𝑢𝑣, 𝑦𝑣⊗𝑦𝑣⟩.
Also, ⟨𝑒 ⊗ 𝑒, 𝑦𝑣 ⊗ 𝑦𝑣⟩ = ⟨𝑒, 𝑦𝑣⟩ = 1. Therefore, the value of the 8 queries are

𝑥1 𝑥1 + ⟨𝑦𝑣, 𝑥⟩⟨𝑦𝑣, 𝑦⟩ + 𝑓
𝑥2 𝑥2 + (⟨𝑦𝑣, 𝑥⟩ + 1)⟨𝑦𝑣, 𝑧⟩ + 𝑓
𝑦1 𝑦1 + ⟨𝑦𝑤, 𝑥′⟩⟨𝑦𝑤, 𝑦′⟩ + 𝑓 + 1
𝑦2 𝑦2 + (⟨𝑦𝑤, 𝑥′⟩ + 1)⟨𝑦𝑤, 𝑧′⟩ + 𝑓 + 1

We finish the proof of the completeness case by a case analysis.
If ⟨𝑦𝑣, 𝑦⟩ = ⟨𝑦𝑤, 𝑦′⟩ = 0, then the sum of entries in the first and third row

is 1, which means that there are different values. Similarly, we conclude that if
⟨𝑦𝑣, 𝑧⟩ = ⟨𝑦𝑤, 𝑧′⟩ = 0, then using similar argument as above, there are different
values in the second and the fourth row. The same applies to the case when
⟨𝑦𝑣, 𝑥⟩ = ⟨𝑦2, 𝑥′⟩ = 1, and the case when ⟨𝑦𝑣, 𝑥⟩ = ⟨𝑦𝑤, 𝑥′⟩ = 0.

Suppose now that ⟨𝑦𝑣, 𝑥⟩ = 1 and all entries are equal. Then from the second
row, we have that 𝑓 = 0, and from the first row, we get ⟨𝑦𝑣, 𝑦⟩ = 0. By the
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discussion above, we have that ⟨𝑦𝑤, 𝑦′⟩ = 1, and the third row gives us ⟨𝑦𝑤, 𝑥′⟩ = 1,
but then the two entries on the last row are different.

Suppose otherwise that ⟨𝑦𝑣, 𝑥⟩ = 0 and all entries are equal. Then from the
first row, we have 𝑓 = 0, and the second row implies ⟨𝑦𝑣, 𝑧⟩ = 0. By the discussion
above, we must have ⟨𝑦𝑤, 𝑧′⟩ = 1, and the last row gives ⟨𝑦𝑤, 𝑥′⟩ = 0, leaving two
different entries in the third row.

Hence 𝑓𝑣 gives a valid 2-coloring of 𝐻.

8.5.2 Soundness
Let 𝛿 = 2−(log 𝑛)𝑏 be the soundness parameter from Theorem 8.12 and let 𝑘 =
(log 𝑛)𝑏/2 be the rank upper-bound from Theorem 8.12.

Lemma 8.14. If there is an independent set in 𝐻 of relative size 𝑠, then

𝑠8 ≤ 𝛿 + 1
2𝑘/2+1 .

Proof. Consider any set 𝐴 ⊆ 𝒱(𝐻) of fractional size 𝑠. For every 𝑣 ∈ 𝑉 , let
𝑓𝑣 ∶ 𝔽(𝑚𝑟+1)×(𝑚𝑟+1)

2 → [0, 1] be the indicator function of 𝐴 on vertices associated
with 𝑣, extended such that it is constant over cosets of ℋ𝑣. The fractional size of
𝐴 is given by

𝐄
𝑣∼𝑉

𝑋∼𝔽(𝑚𝑟+1)×(𝑚𝑟+1)
2

[𝑓𝑣(𝑋)] = 𝐄
𝑣∼𝑉

[ ̂𝑓𝑣,0] .

The set 𝐴 is an independent set if and only if

Θ ∶= 𝐄
𝑢,𝑣,𝑤

𝐄
𝑋𝑖,𝑌𝑖∼𝒯

4
∏
𝑖=1

𝑓𝑣(𝑋𝑖)𝑓𝑤(𝑌𝑖) = 0. (8.1)

Taking Fourier expansion and considering expectations over 𝑋1, 𝑋2, 𝑌1, 𝑌2, we get
the following:

Θ = 𝐄
𝑢,𝑣,𝑤

∑
𝛼1,𝛼2,𝛽1,𝛽2∈𝔽(𝑚𝑟+1)×(𝑚𝑟+1)

2

𝐄
𝐹,𝑥,𝑥′

[

̂𝑓2
𝑣,𝛼1 𝐄

𝑦
[𝜒𝛼1

(𝑥 ⊗ 𝑦)]𝜒𝛼1
(𝐹 ∘ 𝜋)

̂𝑓2
𝑣,𝛼2 𝐄

𝑧
[𝜒𝛼2

((𝑥 + 𝑒) ⊗ 𝑧)]𝜒𝛼2
(𝐹 ∘ 𝜋)

̂𝑓2
𝑤,𝛽1 𝐄

𝑦′
[𝜒𝛽1

(𝑥′ ⊗ 𝑦′)]𝜒𝛽1
(𝐹 ∘ 𝜎)𝜒𝛽1

(𝑒 ⊗ 𝑒)

̂𝑓2
𝑤,𝛽2 𝐄

𝑧′
[𝜒𝛽2

((𝑥′ + 𝑒) ⊗ 𝑧′)]𝜒𝛽2
(𝐹 ∘ 𝜎)𝜒𝛽2

(𝑒 ⊗ 𝑒)].
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Denote the term inside 𝐄𝐹,𝑥,𝑥′ [⋅] as 𝑇 𝑒𝑟𝑚𝑢,𝑣,𝑤(𝛼1, 𝛼2, 𝛽1, 𝛽2).
For the characters involving 𝐹 , we have

𝐄
𝐹

[𝜒𝛼1
(𝐹 ∘ 𝜋)𝜒𝛼2

(𝐹 ∘ 𝜋)𝜒𝛽1
(𝐹 ∘ 𝜎)𝜒𝛽2

(𝐹 ∘ 𝜎)]

= 𝐄
𝐹

[(−1)⟨𝜋(𝛼1+𝛼2),𝐹⟩+⟨𝜎(𝛽1+𝛽2),𝐹⟩] ,

and since 𝐹 ∈ 𝔽(𝑚𝑙+1)×(𝑚𝑙+1)
2 is chosen uniformly at random, the above is 0 unless

𝜋(𝛼1 + 𝛼2) = 𝜎(𝛽1 + 𝛽2).
Let 𝜈(𝛼) ∶= ⟨𝛼, 𝑒 ⊗ 𝑒⟩. Taking expectations over 𝑥, 𝑦, 𝑧, 𝑥′, 𝑦′, 𝑧′, we have that

when 𝜋(𝛼1 + 𝛼2) ≠ 𝜎(𝛽1 + 𝛽2), 𝑇 𝑒𝑟𝑚𝑢,𝑣,𝑤(𝛼1, 𝛼2, 𝛽1, 𝛽2) = 0, and otherwise

𝑇 𝑒𝑟𝑚𝑢,𝑣,𝑤(𝛼1, 𝛼2, 𝛽1, 𝛽2)
= (−1)𝜈(𝛽1+𝛽2) ̂𝑓2

𝑣,𝛼1
̂𝑓2

𝑣,𝛼2
̂𝑓2

𝑤,𝛽1
̂𝑓2

𝑤,𝛽2

Pr
𝑥

[𝛼1𝑥 = 0 ∧ 𝛼2𝑥 = 𝛼2𝑒] Pr
𝑥′

[𝛽1𝑥 = 0 ∧ 𝛽2𝑥′ = 𝛽2𝑒] .

The terms that are potentially non-zero can now be partitioned into three parts:

Θ0 = 𝐄
𝑢,𝑣,𝑤

∑
rank(𝛼1+𝛼2),rank(𝛽1+𝛽2)≤𝑘

𝜋(𝛼1+𝛼2)=𝜎(𝛽1+𝛽2)
𝜈(𝛽1+𝛽2)=0

𝑇 𝑒𝑟𝑚𝑢,𝑣,𝑤(𝛼1, 𝛼2, 𝛽1, 𝛽2)

Θ1 = 𝐄
𝑢,𝑣,𝑤

∑
rank(𝛼1+𝛼2),rank(𝛽1+𝛽2)≤𝑘

𝜋(𝛼1+𝛼2)=𝜎(𝛽1+𝛽2)
𝜈(𝛽1+𝛽2)=1

𝑇 𝑒𝑟𝑚𝑢,𝑣,𝑤(𝛼1, 𝛼2, 𝛽1, 𝛽2)

Θ0 = 𝐄
𝑢,𝑣,𝑤

∑
max{rank(𝛼1+𝛼2),rank(𝛽1+𝛽2)}>𝑘

𝜋(𝛼1+𝛼2)=𝜎(𝛽1+𝛽2)

𝑇 𝑒𝑟𝑚𝑢,𝑣,𝑤(𝛼1, 𝛼2, 𝛽1, 𝛽2) .

We first lower-bound Θ0. Note that all terms in Θ0 are positive. Consider the term
corresponding to 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 = 0. We have

𝐄
𝑢,𝑣,𝑤

̂𝑓4
𝑣,0 ̂𝑓4

𝑤,0 = 𝐄
𝑢

(𝐄
𝑣

̂𝑓4
𝑣,0)

2
≥ ( 𝐄

𝑢,𝑣
̂𝑓𝑣,0)

8
≥ 𝑠8 .

Therefore Θ0 ≥ 𝑠8.
For Θ1, we have the following upper-bound

|Θ1| ≤ 𝐄
𝑢,𝑣,𝑤

∑
rank(𝛼1+𝛼2),rank(𝛽1+𝛽2)≤𝑘

𝜋(𝛼1+𝛼2)=𝜎(𝛽1+𝛽2)
𝜈(𝛽1+𝛽2)=1

̂𝑓2
𝑣,𝛼1

̂𝑓2
𝑣,𝛼2

̂𝑓2
𝑤,𝛽1

̂𝑓2
𝑤,𝛽2

. (8.2)

Consider the following randomized labeling strategy for vertices in 𝑢 ∈ 𝑈 and
𝑣 ∈ 𝑉 : for 𝑣 ∈ 𝑉 , pick (𝛽1, 𝛽2) with probability ̂𝑓2

𝑣,𝛽1
̂𝑓2

𝑣,𝛽2
and set its label to
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𝛽1 +𝛽2; for 𝑢 ∈ 𝑈 , pick a random neighbor 𝑣, and choose (𝛼1, 𝛼2) with probability
̂𝑓2

𝑣,𝛼1
̂𝑓2

𝑣,𝛼2
and set its label to 𝜋(𝛼1 + 𝛼2). Due to folding, we have that 𝛽1 and

𝛽2 both satisfies the homogeneous linear constraints associated with 𝑣, and so does
𝛽1 + 𝛽2. Therefore the right hand side of (8.2) gives the probability that a random
edge of the Label Cover is satisfied by this labeling. Thus |Θ1| ≤ 𝛿.

For Θ2, note that if rank(𝛼) > 𝑘, then for any fixed 𝑏, Pr𝑥[𝛼𝑥 = 𝑏] ≤ 1/2𝑘+1.
Therefore, for any fixed choice of 𝑢, 𝑣, 𝑤, all terms in Θ2 have absolute value at most
1/2𝑘/2+1. Combined with Parseval’s identity, we conclude that |Θ2| ≤ 1/2𝑘/2+1.

Therefore, any independent set in 𝐻 has fractional size at most 2− log𝑏 𝑛/32, and
therefore the chromatic number of 𝐻 is at least

2log𝑏 𝑛/32 = exp((log 𝑁)1/(4−𝑜(1))) .
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Chapter 9

Conclusions and Future Work

In this thesis, we proved new hardness results for Gap1,𝑠-CSP, GraphColoring
and HypergraphColoring. A common theme of all these results is the construc-
tion of Probabilistically Checkable Proofs (PCPs) with perfect completeness. In all
results demonstrated in the thesis, we are given certain restrictions on the PCP
in terms of alphabet size, proof size, number of queries allowed and the types of
verification the verifier could perform, and the goal in all these cases is to build a
PCP for E3-Sat with as good soundness as possible.

In Chapter 5, the PCPs are written in Boolean alphabet, and the focus is to get
the best soundness for a given number of queries.

As for the results for GraphColoring and HypergraphColoring, the main
constraint is that the only type of verification allowed is to read some symbols from
a given proof and check if they are not all equal. In Chapter 7, we are aiming for a
2-query PCP with constant alphabet size. Finally, in Chapter 8, the alphabet size
is restricted to 2, and the number of queries is restricted to some small constant,
in our case, 8.

One aspect in which our HypergraphColoring result is different from the
other two is that the PCP for HypergraphColoring has soundness that de-
creases as the size of the input E3-Sat instance grows, whereas the soundness
parameters are constants for the hardness of Gap1,𝑠-CSP and GraphColoring.
This stronger soundness does come at a cost of having a super-polynomial-size PCP
rather than polynomial size.

In terms of techniques, we demonstrated in Chapter 5 the direct sum technique,
although initially used by Siu On Chan in [24] to construct PCP with only almost
perfect completeness, can nevertheless be adapted and applied to designing PCPs
with perfect completeness. In Chapter 7, we showed that the ideas in [67] can be
extended to the direct sum PCP setting, leading to an exponential improvement in
the inapproximability of GraphColoring. In Chapter 8, we presented a different
way of proving hardness of a special kind of Label-Cover, first studied by Khot
and Saket [77]. We also generalized some of the tools for analyzing Low-Degree-

129
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Long-Code that might become useful in other settings.
PCPs are fascinating objects. Over the past two decades, the study of PCPs

has led to the development of many mathematical tools, some of which we reviewed
earlier in this thesis. For many combinations of parameters, optimal constructions
of PCPs are now known. However, constructing optimal PCPs with perfect com-
pleteness remains challenging in many cases. Below, we consider some questions
most closely related to the topics of this thesis.

Problem 9.1 (Hardness of Gap1,𝑠-𝑘-CSP). What is the smallest 𝑠 for a given 𝑘,
for which Gap1,𝑠-𝑘-CSP is NP-hard?

Chapter 5 gives 𝑠 = 2𝑂(𝑘1/3)/2𝑘. The best algorithm works for 𝑠 = 𝑂(𝑘)/2𝑘,
and this is quite likely optimal. As discussed in detail in Chapter 5, the NP-
hardness for Gap1−𝜀,𝑠-𝑘-CSP is settled by Siu On Chan [24] with 𝑠 = 𝑂(𝑘)/2𝑘.
An interesting result in this direction is by Tamaki and Yoshida [99]. They gave
a 𝑘-query non-adaptive Long-Code test with perfect completeness and soundness
𝑂(𝑘)/2𝑘. Given a Long-Code test, it is now a standard reduction from Unique-
Games-hardness to hardness of CSP. This reduction does not work for proving
hardness of Gap𝑠-CSP because Unique-Games does not have perfect complete-
ness. Understanding the obstacles in converting Tamaki and Yoshida’s test into a
CSP hardness result may be a good starting point.

Problem 9.2 (New algorithms for Gap1,𝑠-CSP). Is it true that for any predicate
𝑃 ⊆ E𝑘-Lin, there exists constant 𝜀 > 0 such that Gap𝜌(𝑃)+𝜀-𝑃 is in P?

As we discussed in Part II, it is easy to find a satisfying assignment for CSP
instances that are conjunctions of linear equations using Gaussian Elimination.
In Chapter 4, we proved that adding any extra accepting assignment to the E𝑘-
Lin predicate gives a predicate that is approximation resistant even on satisfiable
instances. One may ask what happens if we remove some accepting assignments
from E𝑘-Lin, resulting in some predicate 𝑃 ⊊ E𝑘-Lin.

For predicates obtained by removing a single accepting assignment from E𝑘-
Lin, we can easily generalize the algorithm by Zwick [106], such that on satisfiable
instances, the algorithm returns an assignment that satisfies at least a 3/4 fraction
of the constraints, whereas the density of the predicate is strictly less than 1/2.
The algorithm is based on Gaussian Elimination.

Interestingly, for some classes of predicates, Gaussian Elimination is not the
only tool. Consider 1-in-𝑘-Sat, where an input is accepted if exactly one of the
input bits is 1. Guruswami and Trevisan [48] gave a factor 1/𝑒 approximation
algorithm for satisfiable 1-in-𝑘-Sat instances using a natural Linear Programming
relaxation. It is not clear if one can do better with algorithms based on Gaussian
Elimination.

Problem 9.3 (Better uniformity for hypergraph coloring hardness). Prove strong
hardness for coloring 2-colorable 𝑙-uniform hypergraphs, for 3 ≤ 𝑙 < 8.
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The hardness in Chapter 8 applies to 2-colorable 8-uniform hypergraph. It is
therefore natural to ask whether the uniformity can be improved.

Two previous works might be relevant. In [33], Dinur, Regev and Smyth proved
constant-factor hardness for 2-colorable 3-uniform hypergraphs. Their construction
encodes labelings by 2-colorings of Kneser graphs instead of the usual Long-Code.
It is also one of the few intriguing examples where in the soundness case, the output
hypergraphs have large independent sets, even though they are not colorable with
a small number of colors.

Another related result is the hardness of 3-colorable 3-uniform hypergraphs [68].
Khot used Smooth-Label-Cover and Long-Code in his construction, and the
Long-Code part was replaced with Low-Degree-Long-Code recently in [42],
giving a hardness of (log 𝑛)Ω(1/ log log log 𝑛). Generalizing the result in Chapter 8
to 3-coloring of hypergraphs is thus a natural question.

Problem 9.4 (Construction of Label-Cover with matrix labels). Are there more
efficient ways to construct Label-Cover with matrix labels with similar guarantees
as in Theorem 8.12?

Label-Cover instances with matrix labels are used in Chapter 8 to prove
hypergraph coloring hardness results. The construction in Chapter 8 is not com-
pletely satisfactory. In particular, we lost a factor 2 in the power of (log 𝑛)𝑏 going
from Theorem 8.11 to Theorem 8.12. Improving the construction here may lead to
another improvement in the hardness of hypergraph coloring.

Such improvement does not seem to be easy by following our current approach.
In Chapter 8, the way we construct Label-Cover with matrix labels is similar
to that in [77], where we first prove Gap-CSP with superposition hardness, and
then convert it into hardness for Label-Cover with matrix labels. The loss in our
current construction comes from the difficulty of ensuring consistency on the edges
for all ∼ (log 𝑛)𝑏 labelings.

Problem 9.5 (Construction of Label-Cover with strong soundness/label-size
tradeoffs). Prove Label-Cover hardness with soundness 𝜀 using as small a label
set as possible.

For Label-Cover instances with label size 𝑅, a random assignment satisfies a
1/𝑅 fraction of the edges. Therefore, if we want to have NP-hard Label-Cover
problems with soundness 𝜀, the label size needs to be at least 1/𝜀. The construction
from Parallel Repetition as given by Theorem 3.10 has label size 1/𝜀𝑐 for some
constant 𝑐. The constant 𝑐 might be quite large. This could be significant in many
applications because when using Long-Code together with such Label-Cover,
the constant 𝑐 has a significant impact on the size of the output. A smaller 𝑐
gives a more efficient reduction and may even give improved hardness result for
some problems such as GraphColoring following the approach in Chapter 7.
For more examples, we refer to the discussion in [74]. We remark that the focus
here is incomparable to that of the Sliding Scale Conjecture [17] or the Projection



132 9. CONCLUSIONS AND FUTURE WORK

Game Conjecture [84]. Roughly speaking, the Sliding Scale Conjecture and the
Projection Game Conjecture ask for Label-Cover hardness with soundness 𝜀,
instance size poly(𝑛) and 1/𝜀𝑚, where 𝜀 is any 𝜀 ≥ 1/𝑛𝑐 for some constant 𝑐 > 0.
For applications such as those in Part III, the constant 𝑚 may have a significant
impact on the size of the output instance and thus affect the hardness ratio we get.

For Label-Cover with imperfect completeness, Khot and Safra gave a con-
struction that achieves soundness 1/𝑞 with label size 𝑂(𝑞6) in [74]. In [24], Chan
gave a construction that achieves soundness 1/𝑞 with label size 𝑂(𝑞2), although the
size of the instance in Chan’s reduction is much worse than [74].

Problem 9.6 (Efficient construction of Smooth-Label-Cover). Are there any
alternative ways to construct Smooth-Label-Cover, other than that presented in
the proof of Theorem 3.12?

We used Smooth-Label-Cover to obtain inapproximability result in Chapter
5. It is also useful in applications such as hypergraph coloring [68].

Most constructions of Smooth-Label-Cover are similar to that presented
in Theorem 3.12. One major shortcoming of this construction is that there is
a significant blow-up in label size, making it unsuitable for certain hardness of
approximation application.

The Label-Cover in [77] has very good smoothness property and is obtained in
a very different way. The construction uses low degree polynomials over large fields,
and smoothness follows directly from Schwartz-Zippel lemma. Constructions using
low degree polynomials are usually not as straightforward as the one in Theorem
3.12, but it could be a good alternative for efficient construction of Smooth-Label-
Cover.
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